1,006 research outputs found

    In situ interface engineering for probing the limit of quantum dot photovoltaic devices.

    Get PDF
    Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO2-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust 'nanolab' platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells

    Kahler-Ricci flow on stable Fano manifolds

    Full text link
    We study the Kahler-Ricci flow on Fano manifolds. We show that if the curvature is bounded along the flow and if the manifold is K-polystable and asymptotically Chow semistable, then the flow converges exponentially fast to a Kahler-Einstein metric.Comment: 19 page

    Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors

    Full text link
    We investigate the role of quantum confinement on the performance of gas sensors based on two-dimensional InAs membranes. Pd-decorated InAs membranes configured as H2 sensors are shown to exhibit strong thickness dependence, with ~100x enhancement in the sensor response as the thickness is reduced from 48 to 8 nm. Through detailed experiments and modeling, the thickness scaling trend is attributed to the quantization of electrons which favorably alters both the position and the transport properties of charge carriers; thus making them more susceptible to surface phenomena

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE

    Privacy preserving in indoor fingerprint localization and radio map expansion

    Get PDF
    People spend most of their life time in indoor environments and in all of these environments, Location Service Providers (LSPs) improve users’ navigation. Preserving privacy in Location Based Services (LBSs) is vital for indoor LBSs and fingerprinting based indoor localization method is an emerging technique in indoor localization. In such systems, LSP may be curious and untrusted. Therefore, it is preferred that user estimates its location by using a Partial Radio Map (PRM) which is achieved by LSP, anonymously. In this paper, a privacy preserving method that uses Bloom filter for preserving anonymity and creating PRM during localization process, is proposed. In this method, LSP cannot recognize user identity, which is anonymized by the anonymizer. The proposed method has lower computational complexity compared with methods that use encryption or clustering concepts. The proposed method also has higher accuracy in localization compared with those that use Bloom filter with one random selected AP. Then, in order to decrease the complexity and to increase the accuracy at the same time, we introduce a method that expands the radio map by authenticated users, without compromising their privacy. We also enhance the performance of this method, using Hilbert curve for preserving the ambiguity of users’ location. After verifying the user’s data, LSP sends a certificate to the authenticated users. This certificate can increase the priority of users in LBS requests. Simulation results and measurements show that the proposed method on average improves the localization accuracy up to 16% compared with existing location privacy methods

    Label-free cell cycle analysis for high-throughput imaging flow cytometry

    Get PDF
    Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types

    Antitumor activity and mechanisms of action of total glycosides from aerial part of Cimicifuga dahurica targeted against hepatoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medicinal plant is a main source of cancer drug development. Some of the cycloartane triterpenoids isolated from the aerial part of <it>Cimicifuga dahurica </it>showed cytotoxicity in several cancer cell lines. It is of great interest to examine the antiproliferative activity and mechanisms of total triterpenoid glycosides of <it>C. dahurica </it>and therefore might eventually be useful in the prevention or treatment of Hepatoma.</p> <p>Methods</p> <p>The total glycosides from the aerial part (TGA) was extracted and its cytotoxicity was evaluated in HepG2 cells and primary cultured normal mouse hepatocytes by an MTT assay. Morphology observation, Annexin V-FITC/PI staining, cell cycle analysis and western blot were used to further elucidate the cytotoxic mechanism of TGA. Implanted mouse H<sub>22 </sub>hepatoma model was used to demonstrate the tumor growth inhibitory activity of TGA <it>in vivo</it>.</p> <p>Results</p> <p>The IC<sub>50 </sub>values of TGA in HepG2 and primary cultured normal mouse hepatocytes were 21 and 105 μg/ml, respectively. TGA induced G<sub>0</sub>/G<sub>1 </sub>cell cycle arrest at lower concentration (25 μg/ml), and triggered G<sub>2</sub>/M arrest and apoptosis at higher concentrations (50 and 100 μg/ml respectively). An increase in the ratio of Bax/Bcl-2 was implicated in TGA-induced apoptosis. In addition, TGA inhibited the growth of the implanted mouse H<sub>22 </sub>tumor in a dose-dependent manner.</p> <p>Conclusion</p> <p>TGA may potentially find use as a new therapy for the treatment of hepatoma.</p

    Computational Identification and Analysis of the Key Biosorbent Characteristics for the Biosorption Process of Reactive Black 5 onto Fungal Biomass

    Get PDF
    The performances of nine biosorbents derived from dead fungal biomass were investigated for their ability to remove Reactive Black 5 from aqueous solution. The biosorption data for removal of Reactive Black 5 were readily modeled using the Langmuir adsorption isotherm. Kinetic analysis based on both pseudo-second-order and Weber-Morris models indicated intraparticle diffusion was the rate limiting step for biosorption of Reactive Black 5 on to the biosorbents. Sorption capacities of the biosorbents were not correlated with the initial biosorption rates. Sensitivity analysis of the factors affecting biosorption examined by an artificial neural network model showed that pH was the most important parameter, explaining 22%, followed by nitrogen content of biosorbents (16%), initial dye concentration (15%) and carbon content of biosorbents (10%). The biosorption capacities were not proportional to surface areas of the sorbents, but were instead influenced by their chemical element composition. The main functional groups contributing to dye sorption were amine, carboxylic, and alcohol moieties. The data further suggest that differences in carbon and nitrogen contents of biosorbents may be used as a selection index for identifying effective biosorbents from dead fungal biomass

    Display of probability densities for data from a continuous distribution

    Get PDF
    Based on cumulative distribution functions, Fourier series expansion and Kolmogorov tests, we present a simple method to display probability densities for data drawn from a continuous distribution. It is often more efficient than using histograms.Comment: 5 pages, 4 figures, presented at Computer Simulation Studies XXIV, Athens, GA, 201

    New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The result is A = -15.05 +- 0.98(stat) +- 0.56(syst) ppm at the kinematic point theta_lab = 12.3 degrees and Q^2 = 0.477 (GeV/c)^2. The measurement implies that the value for the strange form factor (G_E^s + 0.392 G_M^s) = 0.025 +- 0.020 +- 0.014, where the first error is experimental and the second arises from the uncertainties in electromagnetic form factors. This measurement is the first fixed-target parity violation experiment that used either a `strained' GaAs photocathode to produce highly polarized electrons or a Compton polarimeter to continuously monitor the electron beam polarization.Comment: 8 pages, 4 figures, Tex, elsart.cls; revised version as accepted for Phys. Lett.
    corecore