534 research outputs found

    Comparison of substrate utilization patterns in males and eumenorrheic females during submaximal exercise

    Get PDF

    Ultrasound-enhanced ocular delivery of dexamethasone sodium phosphate: An in vivo study

    Get PDF
    Background The eye\u27s unique anatomy and its physiological and anatomical barriers can limit effective drug delivery into the eye. Methods An in vivo study was designed to determine the effectiveness and safety of ultrasound application in enhancing drug delivery in a rabbit model. Permeability of a steroid ophthalmic drug, dexamethasone sodium phosphate, was investigated in ultrasound- and sham-treated cases. For this study, an eye cup filled with dexamethasone sodium phosphate was placed on the cornea. Ultrasound was applied at intensity of 0.8 W/cm2 and frequency of 400 or 600 kHz for 5 min. The drug concentration in aqueous humor samples, collected 90 min after the treatment, was determined using chromatography methods. Light microscopy observations were done to determine the structural changes in the cornea as a result of ultrasound application. Results An increase in drug concentration in aqueous humor samples of 2.8 times (p \u3c 0.05) with ultrasound application at 400 kHz and 2.4 times (p \u3c 0.01) with ultrasound application at 600 kHz was observed as compared to sham-treated samples. Histological analysis showed that the structural changes in the corneas exposed to ultrasound predominantly consisted of minor epithelial disorganization. Conclusions Ultrasound application enhanced the delivery of an anti-inflammatory ocular drug, dexamethasone sodium phosphate, through the cornea in vivo. Ultrasound-enhanced ocular drug delivery appears to be a promising area of research with a potential future application in a clinical setting

    Homogenized finite element analysis of distal tibia sections: Achievements and limitations.

    Get PDF
    High-resolution peripheral quantitative computed tomography (HR-pQCT) based micro-finite element (μFE) analysis allows accurate prediction of stiffness and ultimate load of standardised (∼1 cm) distal radius and tibia sections. An alternative homogenized finite element method (hFE) was recently validated to compute the ultimate load of larger (∼2 cm) distal radius sections that include Colles' fracture sites. Since the mechanical integrity of the weight-bearing distal tibia is gaining clinical interest, it has been shown that the same properties can be used to predict the strength of both distal segments of the radius and the tibia. Despite the capacity of hFE to predict structural properties of distal segments of the radius and the tibia, the limitations of such homogenization scheme remain unclear. Therefore, the objective of this study is to build a complete mechanical data set of the compressive behavior of distal segments of the tibia and to compare quantitatively the structural properties with the hFE predictions. As a further aim, it is intended to verify whether hFE is also able to capture the post-yield strain localisation or fracture zones in such a bone section, despite the absence of strain softening in the constitutive model. Twenty-five fresh-frozen distal parts of tibias of human donors were used in this study. Sections were cut corresponding to an in-house triple-stack protocol HR-pQCT scan, lapped, and scanned using micro computed tomography (μCT). The sections were tested in compression until failure, unloaded and scanned again in μCT. Volumetric bone mineral density (vBMD) and bone mineral content (BMC) were correlated to compression test results. hFE analysis was performed in order to compare computational predictions (stiffness, yield load and plastic deformation field pattern) with the compressive experiment. Namely, strain localization was assessed based on digital volume correlation (DVC) results and qualitatively compared to hFE predictions by comparing mid-slices patterns. Bone mineral content (BMC) showed a good correlation with stiffness (R2 = 0.92) and yield (R2 = 0.88). Structural parameters also showed good agreement between the experiment and hFE for both stiffness (R2 = 0.96, slope = 1.05 with 95 % CI [0.97, 1.14]) and yield (R2 = 0.95, slope = 1.04 [0.94, 1.13]). The qualitative comparison between hFE and DVC strain localization patterns allowed the classification of the samples into 3 categories: bad (15 sections), semi (8), and good agreement (2). The good correlations between BMC or hFE and experiment for structural parameters were similar to those obtained previously for the distal part of the radius. The failure zones determined by hFE corresponded to registration only in 8 % of the cases. We attribute these discrepancies to local elastic/plastic buckling effects that are not captured by the continuum-based FE approach exempt from strain softening. A way to improve strain localization hFE prediction would be to use longer distal segments with intact cortical shells, as done for the radius. To conclude, the used hFE scheme captures the elastic and yield response of the tibia sections reliably but not the subsequent failure process

    Is a Washer a Mandatory Component in Young Trauma Patients with S1-S2 Iliosacral Screw Fixation of Posterior Pelvis Ring Injuries? A Biomechanical Study

    Full text link
    Background and purpose: Cannulated screws are standard implants for percutaneous fixa-tion of posterior pelvis ring injuries. The choice of whether to use these screws in combination with a washer is still undecided. The aim of this study was to evaluate the biomechanical competence of S1-S2 sacroiliac (SI) screw fixation with and without using a washer across three different screw designs. Material and Methods: Twenty-four composite pelvises were used and an SI joint injury type APC III according to the Young and Burgess classification was simulated. Fixation of the posterior pelvis ring was performed using either partially threaded short screws, fully threaded short screws, or fully threaded long transsacral screws. Biomechanical testing was performed under progressively increasing cyclic loading until failure, with monitoring of the intersegmental and bone-implant movements via motion tracking. Results: The number of cycles to failure and the corresponding load at failure (N) were significantly higher for the fully threaded short screws with a washer (3972 ± 600/398.6 ± 30.0) versus its counterpart without a washer (2993 ± 527/349.7 ± 26.4), p = 0.026. In contrast, these two parameters did not reveal any significant differences when comparing fixations with and without a washer using either partially threaded short of fully threaded long transsacral screws, p ≥ 0.359. Conclusions: From a biomechanical perspective, a washer could be optional when using partially threaded short or fully threaded long transsacral S1-S2 screws for treatment of posterior pelvis ring injuries in young trauma patients. Yet, the omission of the washer in fully threaded short screws could lead to a significant diminished biomechanical stability

    ActiGraph-Measured Breaks in Sedentary Behavior; Are They Real Transitions From Sitting to Standing?

    Get PDF
    Please view abstract in the attached PDF file
    • …
    corecore