148 research outputs found

    A note on Wiener-Hopf factorization for Markov Additive processes

    Full text link
    We prove the Wiener-Hopf factorization for Markov Additive processes. We derive also Spitzer-Rogozin theorem for this class of processes which serves for obtaining Kendall's formula and Fristedt representation of the cumulant matrix of the ladder epoch process. Finally, we also obtain the so-called ballot theorem

    A note on first passage probabilities of a L\'evy process reflected at a general barrier

    Full text link
    In this paper we analyze a L\'evy process reflected at a general (possibly random) barrier. For this process we prove Central Limit Theorem for the first passage time. We also give the finite-time first passage probability asymptotics

    Matrix geometric approach for random walks: stability condition and equilibrium distribution

    Get PDF
    In this paper, we analyse a sub-class of two-dimensional homogeneous nearest neighbour (simple) random walk restricted on the lattice using the matrix geometric approach. In particular, we first present an alternative approach for the calculation of the stability condition, extending the result of Neuts drift conditions [30] and connecting it with the result of Fayolle et al. which is based on Lyapunov functions [13]. Furthermore, we consider the sub-class of random walks with equilibrium distributions given as series of product-forms and, for this class of random walks, we calculate the eigenvalues and the corresponding eigenvectors of the infinite matrix R\mathbf{R} appearing in the matrix geometric approach. This result is obtained by connecting and extending three existing approaches available for such an analysis: the matrix geometric approach, the compensation approach and the boundary value problem method. In this paper, we also present the spectral properties of the infinite matrix R\mathbf{R}
    • …
    corecore