29 research outputs found
Investigation of interaction of human platelet membrane components with anticoagulant drugs Abciximab and Eptifibatide.
Abciximab (Abci) and eptifibatide (Epti) are antiaggregate drugs which may reduce thrombotic complications in acute coronary syndromes. The aim of this work was the investigation of the interaction between the phospholipid-GPIIb/IIIa glycoprotein complex and Abci or Epti, and the influence of these drugs on the phospholipid ratio in the platelet membrane. The interaction between the phospholipid-GPIIb/IIIa glycoprotein complex and antiaggregate drugs were investigated using the Surface Plasmon Resonance Imaging technique (SPRI). Phospholipids phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM) were first immobilized onto the gold chip surface. The phospholipid ratio in the platelet membrane was determined by the HPLC. Only PI, PS, PE and PC were determined. Human platelets treated 'in vitro' with Abci or Epti exhibit changes in the phospholipid ratio in the platelet membrane. The ratio of PS decreases and PC rises. The SPRI distinctly shows interactions between phospholipids and glycoprotein GPIIb/IIIa, and between the phospholipid-glycoprotein GPIIb/IIIa complex and Abci or Epti. The interaction between phospholipids and glycoprotein GPIIb/IIIa is growing in the sequence: P
Characterization of the Cell Membrane During Cancer Transformation
Abstract: The electric properties of the plasma membrane is an indicator of cell condition. The simple, and highly effective, normal-phase (NP) and reversed-phase (RP) high-performance liquid chromatography (HPLC) methods assess phospholipid and free unsaturated fatty acid content, respectively. Herein we focus on changes in phospholipid content [phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanoloamine (PE), phosphatidylcholine (PC)] and free unsaturated fatty acid content [arachidonic acid (AA), linoleic acid (LA), α-linolenic acid (ALA), palmitoleic acid (PA)] in the plasma membranes of non-metastatic colorectal cancer cells (pT3 stage, G2 grade). Surface charge density of normal and tumor large intestine tissue was measured by electrophoresis. The surface charge density as a function of pH, acidic (C TA ) and basic (C TB-) functional group concentrations and their average association constants with hydrogen (K AH ) or hydroxyl (K BOH-) ions were evaluated. Cancer transformation was accompanied by an increase in total phospholipids as well as and increase in C TA , C TB and K BOH whereas the content of free fatty acids and K AH decreased compared with unchanged tumor cells
The Equilibria of Lipid–K+ Ions in Monolayer at the Air/Water Interface
The effect of K+ ion interaction with monolayers of phosphatidylcholine (lecithin, PC) or cholesterol (Ch) was investigated at the air/water interface. We present surface tension measurements of lipid monolayers obtained using a Langmuir method as a function of K+ ion concentration. Measurements were carried out at 22°C using a Teflon trough and a Nima 9000 tensiometer. Interactions between lecithin and K+ ions or Ch and K+ ions result in significant deviations from the additivity rule. An equilibrium theory to describe the behavior of monolayer components at the air/water interface was developed in order to obtain the stability constants and area occupied by one molecule of lipid–K+ ion complex (LK+). The stability constants for lecithin–K+ ion (PCK+) complex, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}, and for cholesterol–K+ ion (ChK+) complex, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}, were calculated by inserting the experimental data. The value of area occupied by one PCK+ complex is 60 Å2 molecule−1, while the area occupied by one ChK+ complex is 40.9 Å2 molecule−1. The complex formation energy (Gibbs free energy) values for the PCK+ and ChK+ complexes are −14.18 ± 0.71 and −16.92 ± 0.85 kJ mol−1, respectively
Interfacial Tension of the Lipid Membrane Formed from Phosphatidylcholine–Decanoic Acid and Phosphatidylcholine–Decylamine Systems
Interfacial tension has been determined for phosphatidylcholine (PC)–decanoic acid (DA) and PC–decylamine (DE) membranes. PC (lecithin), DA and DE were used in the experiments; the interfacial tension values of the pure components are 1.62 × 10−3, −2.38 × 10−2 and −3.88 × 10−2 N/m (hypothetical values for DA and DE), respectively. The 1:1 complexes were formed during formation of PC–DA and PC–DE membranes. The following parameters describing the complexes were determined: the surface concentrations of the lipid membranes formed from these complexes, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}; the interfacial tensions of such membranes, γ3; and the stability constants of these complexes, K
Impedance Analysis of Complex Formation Equilibria in Phosphatidylcholine Bilayers Containing Decanoic Acid or Decylamine
Bilayer lipid membranes composed of phosphatidylcholine and decanoic acid or phosphatidylcholine and decylamine were investigated using electrochemical impedance spectroscopy. Interaction between membrane components causes significant deviations from the additivity rule. Area, capacitance, and stability constant values for the complexes were calculated based on the model assuming 1:1 stoichiometry, and the model was validated by comparison of these values to experimental results. We established that phosphatidylcholine and decylamine form highly stable 1:1 complexes. In the case of decanoic acid-modified phosphatidylcholine membranes, complexes with stoichiometries other than 1:1 should be taken into consideration
The Effect of Contrast Medium SonoVue® on the Electric Charge Density of Blood Cells
The effect of contrast medium SonoVue® on the electric charge density of blood cells (erythrocytes and thrombocytes) was measured using a microelectrophoretic method. We examined the effect of adsorbed H+ and OH− ions on the surface charge of erythrocytes or thrombocytes. Surface charge density values were determined from electrophoretic mobility measurements of blood cells performed at various pH levels. The interaction between solution ions and the erythrocyte’s or thrombocyte’s surface was described by a four-component equilibrium model. The agreement between the experimental and theoretical charge variation curves of the erythrocytes and thrombocytes was good at pH 2–9. The deviation observed at a higher pH may be caused by disregarding interactions between the functional groups of blood cells