183 research outputs found
Belief Consensus Algorithms for Fast Distributed Target Tracking in Wireless Sensor Networks
In distributed target tracking for wireless sensor networks, agreement on the
target state can be achieved by the construction and maintenance of a
communication path, in order to exchange information regarding local likelihood
functions. Such an approach lacks robustness to failures and is not easily
applicable to ad-hoc networks. To address this, several methods have been
proposed that allow agreement on the global likelihood through fully
distributed belief consensus (BC) algorithms, operating on local likelihoods in
distributed particle filtering (DPF). However, a unified comparison of the
convergence speed and communication cost has not been performed. In this paper,
we provide such a comparison and propose a novel BC algorithm based on belief
propagation (BP). According to our study, DPF based on metropolis belief
consensus (MBC) is the fastest in loopy graphs, while DPF based on BP consensus
is the fastest in tree graphs. Moreover, we found that BC-based DPF methods
have lower communication overhead than data flooding when the network is
sufficiently sparse
Distributed cognitive radio systems with temperature-interference constraints and overlay scheme
Cognitive radio represents a promising paradigm to further increase transmission rates in wireless networks, as well as to facilitate the deployment of self-organized networks such as femtocells. Within this framework, secondary users (SU) may exploit the channel under the premise to maintain the quality of service (QoS) on primary users (PU) above a certain level. To achieve this goal, we present a noncooperative game where SU maximize their transmission rates, and may act as well as relays of the PU in order to hold their perceived QoS above the given threshold. In the paper, we analyze the properties of the game within the theory of variational inequalities, and provide an algorithm that converges to one Nash Equilibrium of the game. Finally, we present some simulations and compare the algorithm with another method that does not consider SU acting as relays
Distributed black-box optimization of nonconvex functions
We combine model-based methods and distributed stochastic approximation to propose a fully distributed algorithm for nonconvex optimization, with good empirical performance and convergence guarantees. Neither the expression of the objective nor its gradient are known. Instead, the objective is like a “black-box”, in which the agents input candidate solutions and evaluate the output. Without central coordination, the distributed algorithm naturally balances the computational load among the agents. This is especially relevant when many samples are needed (e.g., for high-dimensional objectives) or when evaluating each sample is costly. Numerical experiments over a difficult benchmark show that the networked agents match the performance of a centralized architecture, being able to approach the global optimum, while none of the individual noncooperative agents could by itself
A control theoretic approach to solve a constrained uplink power dynamic game
This paper addresses an uplink power control dynamic game where we assume that each user battery represents the system state that changes with time following a discrete-time version of a differential game. To overcome the complexity of the analysis of a dynamic game approach we focus on the concept of Dynamic Potential Games showing that the game can be solved as an equivalent Multivariate Optimum Control Problem. The solution of this problem is quite interesting because different users split the activity in time, avoiding higher interferences and providing a long term fairness
Cooperative localization in mobile networks using nonparametric variants of belief propagation
Of the many state-of-the-art methods for cooperative localization in wireless sensor networks (WSN), only very few adapt well to mobile networks. The main problems of the well-known algorithms, based on nonparametric belief propagation (NBP), are the high communication cost and inefficient sampling techniques. Moreover, they either do not use smoothing or just apply it o ine. Therefore, in this article, we propose more flexible and effcient variants of NBP for cooperative localization in mobile networks. In particular, we provide: i) an optional 1-lag smoothing done almost in real-time, ii) a novel low-cost communication protocol based on package approximation and censoring, iii) higher robustness of the standard mixture importance sampling (MIS) technique, and iv) a higher amount of information in the importance densities by using the population Monte Carlo (PMC) approach, or an auxiliary variable. Through extensive simulations, we confirmed that all the proposed techniques outperform the standard NBP method
Reducing communication overhead for cooperative localization using nonparametric belief propagation
A number of methods for cooperative localization has been proposed, but most of them provide only location estimate, without associated uncertainty. On the other hand, nonparametric belief propagation (NBP), which provides approximated posterior distributions of the location estimates, is expensive mostly because of the transmission of the particles. In this paper, we propose a novel approach to reduce communication overhead for cooperative positioning using NBP. It is based on: i) communication of the beliefs (instead of the messages), ii) approximation of the belief with Gaussian mixture of very few components, and iii) censoring. According to our simulations results, these modifications reduce significantly communication overhead while providing the estimates almost as accurate as the transmission of the particles
- …