103 research outputs found

    Future multimodal mobility scenarios within Europe

    Get PDF
    The European transport system faces multiple pressing challenges, including the need for significant emissions reduction in the sector and the provision of a seamless, multimodal journey to travellers. In order to address these challenges, a thorough understanding and assessment of different development pathways are required. This paper elaborates on four different scenarios developed within the scope of the Modus project. Based on these as well as additional insights from experts of the air and rail sector, initial implications for emissions reduction potential, travel times, or technological options are discussed

    Immunosenescence and its hallmarks: How to oppose aging strategically? A review of potential options for therapeutic intervention

    Get PDF
    Aging is accompanied by remodeling of the immune system. With time, this leads to a decline in immune efficacy, resulting in increased vulnerability to infectious diseases, diminished responses to vaccination, and a susceptibility to age-related inflammatory diseases. An age-associated immune alteration, extensively reported in previous studies, is the reduction in the number of peripheral blood naive cells, with a relative increase in the frequency of memory cells. These two alterations, together with inflamm-aging, are considered the hallmarks of immunosenescence. Because aging is a plastic process, it is influenced by both nutritional and pharmacological interventions. Therefore, the role of nutrition and of immunomodulation in immunosenescence is discussed, due to the multifactorial influence on these hallmarks. The close connection between nutrition, intake of bioactive nutrients and supplements, immune function, and inflammation demonstrate the key role of dietary strategies as regulators of immune response and inflammatory status, hence as possible modulators of the rate of immunosenescence. In addition, potential options for therapeutic intervention are clarified. In particular, the use of interleukin-7 as growth factor for naive T cells, the function of checkpoint inhibitors in improving T cell responses during aging and, the potential of drugs that inhibit mitogen-activated protein kinases and their interaction with nutrient signaling pathways are discussed. Finally, it is suggested that the inclusion of appropriate combinations of toll-like receptor agonists may enhance the efficacy of vaccination in older adults

    IKZF1 alterations are not associated with outcome in 498 adults with B-precursor ALL enrolled in the UKALL14 trial

    Get PDF
    IKZF1 deletions (ΔIKZF1) are commonly detected in B-precursor acute lymphoblastic leukemia (ALL; B-ALL) and are widely assumed to have a significant impact on outcome. We compared the ability of multiplex ligand-dependent probe amplification (MLPA) and polymerase chain reaction (PCR) to detect ΔIKZF1 and to determine the impact on event-free survival of patients with precursor B-ALL aged 23 to 65 years recruited to the completed trial UKALL14 (ISRCTN 66541317). From 655 recruits with BCR-ABL1+ and BCR-ABL1− B-ALL, all available diagnostic DNA samples (76% of the recruited population) were screened by multiplex end point PCR covering 4 deletions: dominant-negative (DN) Δ4-7 or the loss of function Δ2-7, Δ4-8, and Δ2-8 (n = 498), MLPA (n = 436), or by both (n = 420). Although patients with BCR-ABL1− ΔIKZF1 were more likely to have minimal residual disease at the end of induction, we did not find any impact of ΔIKZF1 (including subgroup analysis for DN or loss-of-function lesions) or the IKZF1plus genotype on event-free, overall survival, or relapse risk by univariable or multivariable analyses. Consistent with the technical approach, MLPA not only detected a wider range of deletions than PCR but also failed to detect some PCR-detected lesions. The main difference between our study and others reporting an association between ΔIKZF1 and outcome is the older age of participants in our population. The impact of ΔIKZF1 in ALL may be less marked in an older population of patients. Our study underscores the need for analyses in large, harmonized data sets. This trial was registered at www.clinicaltrials.gov as #NCT01085617

    A Phase 1 trial of human telomerase reverse transcriptase (hTERT) vaccination combined with therapeutic strategies to control immune-suppressor mechanisms

    Get PDF
    The presence of inhibitory immune cells and difficulty in generating activated effector T-cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T-cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T-cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T-cells with effector phenotypes. The in vitro re-challenge of T-cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T-cells with specificity for hTERT. However, a population of exhausted PD-1 + cytotoxic T-cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T-cell population

    Mechanical Strain Stabilizes Reconstituted Collagen Fibrils against Enzymatic Degradation by Mammalian Collagenase Matrix Metalloproteinase 8 (MMP-8)

    Get PDF
    Collagen, a triple-helical, self-organizing protein, is the predominant structural protein in mammals. It is found in bone, ligament, tendon, cartilage, intervertebral disc, skin, blood vessel, and cornea. We have recently postulated that fibrillar collagens (and their complementary enzymes) comprise the basis of a smart structural system which appears to support the retention of molecules in fibrils which are under tensile mechanical strain. The theory suggests that the mechanisms which drive the preferential accumulation of collagen in loaded tissue operate at the molecular level and are not solely cell-driven. The concept reduces control of matrix morphology to an interaction between molecules and the most relevant, physical, and persistent signal: mechanical strain.The investigation was carried out in an environmentally-controlled microbioreactor in which reconstituted type I collagen micronetworks were gently strained between micropipettes. The strained micronetworks were exposed to active matrix metalloproteinase 8 (MMP-8) and relative degradation rates for loaded and unloaded fibrils were tracked simultaneously using label-free differential interference contrast (DIC) imaging. It was found that applied tensile mechanical strain significantly increased degradation time of loaded fibrils compared to unloaded, paired controls. In many cases, strained fibrils were detectable long after unstrained fibrils were degraded.In this investigation we demonstrate for the first time that applied mechanical strain preferentially preserves collagen fibrils in the presence of a physiologically-important mammalian enzyme: MMP-8. These results have the potential to contribute to our understanding of many collagen matrix phenomena including development, adaptation, remodeling and disease. Additionally, tissue engineering could benefit from the ability to sculpt desired structures from physiologically compatible and mutable collagen

    Machine Learning based tool for CMS RPC currents quality monitoring

    Full text link
    The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to 2×10342\times 10^{34} cm2s1\text{cm}^{-2}\text{s}^{-1} are routinely achieved. The CMS RPC system performance is constantly monitored and the detector is regularly maintained to ensure stable operation. The main monitorable characteristics are dark current, efficiency for muon detection, noise rate etc. Herein we describe an automated tool for CMS RPC current monitoring which uses Machine Learning techniques. We further elaborate on the dedicated generalized linear model proposed already and add autoencoder models for self-consistent predictions as well as hybrid models to allow for RPC current predictions in a distant future

    Effects of the electronic threshold on the performance of the RPC system of the CMS experiment

    Get PDF
    Resistive Plate Chambers have a very important role for muon triggering both in the barrel and in the endcap regions of the CMS experiment at the Large Hadron Collider (LHC). In order to optimize their performance, it is of primary importance to tune the electronic threshold of the front-end boards reading the signals from these detectors. In this paper we present the results of a study aimed to evaluate the effects on the RPC efficiency, cluster size and detector intrinsic noise rate, of variations of the electronics threshold voltage

    Triggering of toll-like receptors in old individuals. Relevance for vaccination

    No full text
    Aging is characterized by a general decline in a range of physiological functions, with a consequent increase in the risk of developing a variety of chronic diseases and geriatric syndromes. Additionally, increasing age is accompanied by a progressive decline in both innate and acquired immune system, referred to as immunosenescence. This impaired ability to mount an efficient immune response after exposure to microorganisms or vaccines represents a major challenge in acquiring protection against pathogens in aging. Therefore, there is still a great need for vaccines that are tailored to optimally stimulate the aged immune system, thus promoting more successful aging. Various strategies can be used to improve vaccine efficacy in old people. Despite this, meta-analyses have clearly shown that the magnitude of protection obtained remains lower in older adults. Recent studies show that stimulation of Toll-like receptors, using stimulatory ligands, can enhance vaccine efficacy by a number of mechanisms, including the activation of innate immune cells and the consequent production of inflammatory cytokines. Therefore, a possible strategy for more effective vaccination in the older population is the triggering of multiple TLRs, using a combined adjuvant for the synergistic activation of cellular immunity. Preliminary in vitro data suggest that in humans the presence of multiple TLR agonists can result in the greater stimulation of antigen-specific immune responses in immune cells both in the young healthy and in the immune senescent older donors. These data suggest that appropriately selected combinations of TLR agonists could enhance the efficacy of vaccination mediated immunity in older people
    corecore