20 research outputs found

    Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities

    Full text link
    Apart from the 11-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155-160 days. A rapid increase of the wave amplitude could give place to a magnetic flux emergence leading to observed periodicities in solar activity indicators related with magnetic flux.Comment: 34 pages, 5 figures, accepted in Ap

    Statistical properties of coronal hole rotation rates: Are they linked to the solar interior?

    Full text link
    The present paper discusses results of a statistical study of the characteristics of coronal hole (CH) rotation in order to find connections to the internal rotation of the Sun. The goal is to measure CH rotation rates and study their distribution over latitude and their area sizes. In addition, the CH rotation rates are compared with the solar photospheric and inner layer rotational profiles. We study coronal holes observed within ±60\pm 60 latitude and longitude degrees from the solar disc centre during the time span from the 1 January 2013 to 20 April 2015, which includes the extended peak of solar cycle 24.We used data created by the Spatial Possibilistic Clustering Algorithm (SPoCA), which provides the exact location and characterisation of solar coronal holes using SDO=AIA 193 {\AA} channel images. The CH rotation rates are measured with four-hour cadence data to track variable positions of the CH geometric centre. North-south asymmetry was found in the distribution of coronal holes: about 60 percent were observed in the northern hemisphere and 40 percent were observed in the southern hemisphere. The smallest and largest CHs were present only at high latitudes. The average sidereal rotation rate for 540 examined CHs is 13:86(±0:05)13:86 (\pm 0:05) degrees/d. Conclusions. The latitudinal characteristics of CH rotation do not match any known photospheric rotation profile. The CH angular velocities exceed the photospheric angular velocities at latitudes higher than 35-40 degrees. According to our results, the CH rotation profile perfectly coincides with tachocline and the lower layers of convection zone at around 0.71 R⊙R_{\odot}; this indicates that CHs may be linked to the solar global magnetic field, which originates in the tachocline region.Comment: 8 pages, 8 figures, Accepted for publication in A&

    Magneto-Rossby Waves and Seismology of Solar Interior

    No full text
    Eleven-year Schwabe cycle in solar activity is not yet fully understood despite of its almost two century discovery. It is generally interpreted as owing to some sort of magnetic dynamo operating below or inside the convection zone. The magnetic field strength in the dynamo layer may determine the importance of the tachocline in the model which is responsible for the cyclic magnetic field, but the direct measurement is not possible. On the other hand, solar activity also displays short term variations over time scale of months (Rieger-type periodicity), which significantly depend on solar activity level: stronger cycles (or more active hemisphere in each cycle) generally show shorter periodicity and vice versa. The periodicity is probably connected to Rossby-type waves in the dynamo layer, therefore alongside with wave dispersion relations it might be used to estimate the dynamo magnetic field strength. We performed the wavelet analysis of hemispheric sunspot areas during solar cycles 13–24 and corresponding hemispheric values of Rieger-type periodicity are found in each cycle. Two different Rossby-type waves could lead to observed periodicities: spherical fast magneto-Rossby waves and equatorial Poincare-Rossby waves. The dispersion relation of spherical fast magneto-Rossby waves gives the estimated field strength of >40 kG in stronger cycles (or in more active hemisphere) and <40 kG in weaker cycles (or in less active hemisphere). The equatorial Poincare-Rossby waves lead to >20 kG and <15 kG, respectively. Future perspectives of Rieger-type periodicities and Rossby-type waves in testing various dynamo models are discussed

    Tidally Forced Planetary Waves in the Tachocline of Solar-like Stars

    No full text
    Can atmospheric waves in planet-hosting solar-like stars substantially resonate to tidal forcing, perhaps at a level of impacting the space weather or even being dynamo-relevant? In particular, low-frequency Rossby waves, which have been detected in the solar near-surface layers, are predestined to respond to sunspot cycle-scale perturbations. In this paper, we seek to address these questions as we formulate a forced wave model for the tachocline layer, which is widely considered as the birthplace of several magnetohydrodynamic planetary waves, i.e., Rossby, inertia-gravity (Poincaré), Kelvin, Alfvén, and gravity waves. The tachocline is modeled as a shallow plasma atmosphere with an effective free surface on top that we describe within the Cartesian β -plane approximation. As a novelty to former studies, we equip the governing equations with a conservative tidal potential and a linear friction law to account for viscous dissipation. We combine the linearized governing equations into one decoupled wave equation, which facilitates an easily approachable analysis. Analytical results are presented and discussed within several interesting free, damped, and forced wave limits for both midlatitude and equatorially trapped waves. For the idealized case of a single tide-generating body following a circular orbit, we derive an explicit analytic solution that we apply to our Sun for estimating leading-order responses to Jupiter. Our analysis reveals that Rossby waves resonating to low-frequency perturbations can potentially reach considerable velocity amplitudes on the order of 10 ^1 –10 ^2 cm s ^−1 , which, however, strongly rely on the yet unknown frictional damping parameter

    DYNAMICS OF A SOLAR PROMINENCE TORNADO OBSERVED BY SDO/AIA ON 2012 NOVEMBER 7-8

    Get PDF
    © 2015. The American Astronomical Society. All rights reserved. We study the detailed dynamics of a solar prominence tornado using time series of 171, 304, 193, and 211 Å spectral lines obtained by the Solar Dynamics Observatory/Atmospheric Imaging Assembly during 2012 November 7-8. The tornado first appeared at 08:00 UT, November 07, near the surface, gradually rose upwards with the mean speed of ∼1.5 km s-1 and persisted over 30 hr. Time-distance plots show two patterns of quasi-periodic transverse displacements of the tornado axis with periods of 40 and 50 minutes at different phases of the tornado evolution. The first pattern occurred during the rising phase and can be explained by the upward motion of the twisted tornado. The second pattern occurred during the later stage of evolution when the tornado already stopped rising and could be caused either by MHD kink waves in the tornado or by the rotation of two tornado threads around a common axis. The later hypothesis is supported by the fact that the tornado sometimes showed a double structure during the quasi-periodic phase. 211 and 193 Å spectral lines show a coronal cavity above the prominence/tornado, which started expansion at ∼13:00 UT and continuously rose above the solar limb. The tornado finally became unstable and erupted together with the corresponding prominence as coronal mass ejection (CME) at 15:00 UT, November 08. The final stage of the evolution of the cavity and the tornado-related prominence resembles the magnetic breakout model. On the other hand, the kink instability may destabilize the twisted tornado, and consequently prominence tornadoes can be used as precursors for CMEs.18 pages, 7 figures, Accepted in ApJstatus: publishe

    RIEGER-TYPE PERIODICITY DURING SOLAR CYCLES 14-24: ESTIMATION OF DYNAMO MAGNETIC FIELD STRENGTH IN THE SOLAR INTERIOR

    Get PDF
    © 2016. The American Astronomical Society. All rights reserved.. Solar activity undergoes a variation over timescales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14-24. We found that the Rieger-type periods occur in all cycles, but they are cycle dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185-195 days during the weak cycles 14-15 and 24 and a periodicity of 155-165 days during the stronger cycles 16-23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonics of fast Rossby waves with m = 1 and n = 4, where m (n) indicates the toroidal (poloidal) wavenumbers, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14-24. Our estimations suggest a field strength of ∼40 kG for the stronger cycles and ∼20 kG for the weaker cycles.journal_title: The Astrophysical Journal article_type: paper article_title: RIEGER-TYPE PERIODICITY DURING SOLAR CYCLES 14–24: ESTIMATION OF DYNAMO MAGNETIC FIELD STRENGTH IN THE SOLAR INTERIOR copyright_information: © 2016. The American Astronomical Society. All rights reserved. date_received: 2015-12-18 date_accepted: 2016-05-09 date_epub: 2016-07-20status: publishe
    corecore