3,080 research outputs found
Lab and Field Tests of a Low-Cost 3-Component Seismometer for Shallow Passive Seismic Applications
We performed laboratory tests and field surveys to evaluate the performance of a low-cost 3-component seismometer, consisting of three passive electromagnetic spring-mass sensors, whose 4.5 Hz natural frequency is extended down to 0.5 Hz thanks to hyper damping. Both lab and field datasets show that the −3 dB band of the seismometer ranges approximately from 0.7 to 39 Hz, in agreement with the nominal specifications. Median magnitude frequency response curves obtained from processing field data indicate that lower corner of the −3 dB band could be extended down to 0.55 Hz and the nominal sensitivity may be overestimated. Lab results confirm the non-linear behavior of the passive spring-mass sensor expected for high-level input signals (a few to tens of mm/s) and field data confirm relative timing accuracy is ±10 ms (1 sample). We found that absolute timing of data collected with USB GPS antennas can be affected by lag as large as +0.5 s. By testing two identical units, we noticed that there could be differences around 0.5 dB (i.e., about 6%) between the components of the same unit as well as between the same component of the two units. Considering shallow passive seismic applications and mainly focusing on unstable slope monitoring, our findings show that the tested seismometer is able to identify resonance frequencies of unstable rock pillars and to generate interferograms that can be processed to estimate subsurface velocity variations
Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory
The chameleonic behaviour of the String theory dilaton is suggested. Some of
the possible consequences of the chameleonic string dilaton are analyzed in
detail. In particular, (1) we suggest a new stringy solution to the
cosmological constant problem and (2) we point out the non-equivalence of
different conformal frames at the quantum level. In order to obtain these
results, we start taking into account the (strong coupling) string loop
expansion in the string frame (S-frame), therefore the so-called form factors
are present in the effective action. The correct Dark Energy scale is recovered
in the Einstein frame (E-frame) without unnatural fine-tunings and this result
is robust against all quantum corrections, granted that we assume a proper
structure of the S-frame form factors in the strong coupling regime. At this
stage, the possibility still exists that a certain amount of fine-tuning may be
required to satisfy some phenomenological constraints. Moreover in the E-frame,
in our proposal, all the interactions are switched off on cosmological length
scales (i.e. the theory is IR-free), while higher derivative gravitational
terms might be present locally (on short distances) and it remains to be seen
whether these facts clash with phenomenology. A detailed phenomenological
analysis is definitely necessary to clarify these points
Long-term hydrogeophysical monitoring of the internal conditions of river levees
To evaluate the vulnerability of the earthen levee of an irrigation canal in San Giacomo delle Segnate, Italy, a customized electrical resistivity tomography (ERT) monitoring system was installed in September 2015 and has been continuously operating since then. Thanks to a meteorological station deployed at the study site, we could investigate the relationship between the inverted resistivity values and different parameters, namely air temperature, rainfall and water level in the canal. Air temperature seems to have a minor but not negligible influence on resistivity variations, especially at shallow depth. A model of soil temperature versus depth was used to correct resistivity sections for air temperature variations through the different seasons. Changes of the water level in the canal and rainfall significantly affect measured resistivity values. At the study site, the most important variations of resistivity are related to saturation and dewatering processes in the irrigation periods. Although we explored the effect of drawdown procedures on resistivity data, this process, causing rapid variations of resistivity values, is still not completely understood because the canal is rapidly emptied during rainfall events. Therefore, the effect of variations of the water level in the canal on levee resistivity cannot be distinguished from the effect of rainfalls. To study the effect of water level variations alone, we considered the beginning of the irrigation period when the dry canal is gradually filled and we observed a smooth trend of resistivity changes. The effect of rainfall on the data was studied during different periods of the year and at different depths of the levee so that the resistivity variations could be evaluated under different conditions. To convert the inverted resistivity sections into water content maps, an empirical and site-dependent relationship between resistivity and water content was obtained using core samples. Water content data can then be used for the implementation of stability analysis using custom modeling. This study introduces an efficient technique to monitor earthen levees and to control the evolution of seepage and water saturation in pseudo-real time. Such a technique can be exploited by Public Administrations to reduce hydrogeological risks significantly
Geoelectrical characterization and monitoring of slopes on a rainfall-triggered landslide simulator
In this paper, we present the results of time-lapse electrical resistivity tomography (ERT) monitoring of rainfall-triggered shallow landslides reproduced on a laboratory-scale physical model. The main objective of our experiments was to monitor rainwater infiltration through landslide body in order to improve our understanding of the precursors of failure. Time-domain reflectometry (TDR) data were also acquired to obtain the volumetric water content. Knowing the porosity, water saturation was calculated from the volumetric water content and we could calibrate Archie's equation to calculate water saturation maps from inverted resistivity values. Time-lapse ERT images proved to be effective in monitoring the hydrogeological conditions of the slope as well as in detecting the development of fracture zones before collapse. We performed eight laboratory tests and the results show that the landslide body becomes unstable at zones where the water saturation exceeds 45%. It was also observed that instability could occur at the boundaries between areas with different water saturations. Our study shows that time-lapse ERT technique can be employed to monitor the hydrogeological conditions of landslide bodies and the monitoring strategy could be extended to field-scale applications in areas prone to the development of shallow landslides
Oral sucrosomial iron is as effective as intravenous ferric carboxy‐maltose in treating anemia in patients with ulcerative colitis
Anemia is a frequent complication of ulcerative colitis, and is frequently caused by iron deficiency. Oral iron supplementation displays high rates of gastrointestinal adverse effects. However, the formulation of sucrosomial iron (SI) has shown higher tolerability. We performed a prospective study to compare the effectiveness and tolerability of oral SI and intravenous ferric carboxy‐maltose (FCM) in patients with ulcerative colitis in remission and mild‐to‐moderate anemia. Patients were randomized 1:1 to receive 60 mg/day for 8 weeks and then 30 mg/day for 4 weeks of oral SI or intravenous 1000 mg of FCM at baseline. Hemoglobin and serum levels of iron and ferritin were assessed after 4, 8, and 12 weeks from baseline. Hemoglobin and serum iron increased in both groups after 4 weeks of therapy, and remained stable during follow up, without significant treatment or treatment‐by‐time interactions (p = 0.25 and p = 0.46 for hemoglobin, respectively; p = 0.25 and p = 0.26 for iron, respectively). Serum ferritin did not increase over time during SI supplementation, while it increased in patients treated with FCM (treatment effect, p = 0.0004; treatment‐bytime interaction effect, p = 0.0002). Overall, this study showed that SI and FCM displayed similar effectiveness and tolerability for treatment of mild‐to‐moderate anemia in patients with ulcerative colitis under remission
Co-carcinogenic effects of vitamin E in prostate
A large number of basic researches and observational studies suggested the cancer preventive activity of vitamin E, but large-scale human intervention trials have yielded disappointing results and actually showed a higher incidence of prostate cancer although the mechanisms underlying the increased risk remain largely unknown. Here we show through in vitro and in vivo studies that vitamin E produces a marked inductive effect on carcinogen-bioactivating enzymes and a pro-oxidant status promoting both DNA damage and cell transformation frequency. First, we found that vitamin E in the human prostate epithelial RWPE-1 cell line has the remarkable ability to upregulate the expression of various phase-I activating cytochrome P450 (CYP) enzymes, including activators of polycyclic aromatic hydrocarbons (PAHs), giving rise to supraphysiological levels of reactive oxygen species. Furthermore, our rat model confirmed that vitamin E in the prostate has a powerful booster effect on CYP enzymes associated with the generation of oxidative stress, thereby favoring lipid-derived electrophile spread that covalently modifies proteins. We show that vitamin E not only causes DNA damage but also promotes cell transformation frequency induced by the PAH-prototype benzo[a]pyrene. Our findings might explain why dietary supplementation with vitamin E increases the prostate cancer risk among healthy men
Mesoscale productivity fronts and local fishing opportunities in the European Seas
This study evaluates the relationship between both commercial and scientific spatial fisheries data and a new satellite-based estimate of potential fish production (Ocean Productivity available to Fish, OPFish) in the European Seas. To construct OPFish, we used productivity frontal features derived from chlorophyll-a horizontal gradients, which characterize 10%–20% of the global phytoplankton production that effectively fuels higher trophic levels. OPFish is relatively consistent with the spatial distribution of both pelagic and demersal fish landings and catches per unit of effort (LPUEs and CPUEs, respectively). An index of harvest relative to ocean productivity (HP index) is calculated by dividing these LPUEs or CPUEs with OPFish. The HP index reflects the intensity of fishing by gear type with regard to local fish production. Low HP levels indicate lower LPUEs or CPUEs than expected from oceanic production, suggesting over-exploitation, while high HP levels imply more sustainable fishing. HP allows comparing the production-dependent suitability of local fishing intensities. Our results from bottom trawl data highlight that over-exploitation of demersal species from the shelves is twice as high in the Mediterranean Sea than in the North-East Atlantic. The estimate of HP index by dominant pelagic and demersal gears suggests that midwater and bottom otter trawls are associated with the lowest and highest overfishing, respectively. The contrasts of fishing intensity at local scales captured by the HP index suggest that accounting for the local potential fish production can promote fisheries sustainability in the context of ecosystem-based fisheries management as required by international marine policies
Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector
A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …