29 research outputs found

    A public data archive for the Italian radio telescopes

    Get PDF
    The amount of data delivered by modern instrumentation and observing techniques is bringing radio astronomy in the era of Big Data, and the nowadays widely adopted Open Data policies allow free and open access to data from many radio astronomy facilities. A fundamental ingredient to enable Open Science in the radio astronomical community and to engage also public participation (the so called Citizen Science) is thus the availability of public archives in which data can be accessed and searched with modern software tools. A web-based, VO-compliant public archive has been built to host data from the Italian radio telescopes managed by the National Institute for Astrophysics (INAF). The archive main features consist in the capability to handle the various types of data coming from the different observing instrumentation at the telescopes; the adoption of a policy to guarantee the data proprietary period; the accessibility of data through a web interface and the adoption of VO standards to allow for successful scientific exploitation of the archive itself in the data mining era. We present the progress status of the public Data Archive for the Italian radio telescopes being developed to provide the international community with a state-of-the-art archive for radio astronomical data

    Radio data archiving system

    Get PDF
    Radio Astronomical Data models are becoming very complex since the huge possible range of instrumental configurations available with the modern Radio Telescopes. What in the past was the last frontiers of data formats in terms of efficiency and flexibility is now evolving with new strategies and methodologies enabling the persistence of a very complex, hierarchical and multi-purpose information. Such an evolution of data models and data formats require new data archiving techniques in order to guarantee data preservation following the directives of Open Archival Information System and the International Virtual Observatory Alliance for data sharing and publication. Currently, various formats (FITS, MBFITS, VLBI's XML description files and ancillary files) of data acquired with the Medicina and Noto Radio Telescopes can be stored and handled by a common Radio Archive, that is planned to be released to the (inter)national community by the end of 2016. This state-of-the-art archiving system for radio astronomical data aims at delegating as much as possible to the software setting how and where the descriptors (metadata) are saved, while the users perform user-friendly queries translated by the web interface into complex interrogations on the database to retrieve data. In such a way, the Archive is ready to be Virtual Observatory compliant and as much as possible user-friendly

    The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys

    Full text link
    [Abridged] We investigate the global galaxy evolution over 12 Gyr (0.05<z<4.5), from the star formation rate density (SFRD), combining the VVDS Deep (17.5<=I<=24.0) and Ultra-Deep (23.00<=i<=24.75) surveys. We obtain a single homogeneous spectroscopic redshift sample, totalizing about 11000 galaxies. We estimate the rest-frame FUV luminosity function (LF) and luminosity density (LD), extract the dust attenuation of the FUV radiation using SED fitting, and derive the dust-corrected SFRD. We find a constant and flat faint-end slope alpha in the FUV LF at z1.7, we set alpha steepening with (1+z). The absolute magnitude M*_FUV brightens in the entire range 02 it is on average brighter than in the literature, while phi* is smaller. Our total LD shows a peak at z=2, present also when considering all sources of uncertainty. The SFRD history peaks as well at z=2. It rises by a factor of 6 during 2 Gyr (from z=4.5 to z=2), and then decreases by a factor of 12 during 10 Gyr down to z=0.05. This peak is mainly produced by a similar peak within the population of galaxies with -21.5<=M_FUV<=-19.5 mag. As times goes by, the total SFRD is dominated by fainter and fainter galaxies. The presence of a clear peak at z=2 and a fast rise at z>2 of the SFRD is compelling for models of galaxy formation. The mean dust attenuation A_FUV of the global galaxy population rises by 1 mag during 2 Gyr from z=4.5 to z=2, reaches its maximum at z=1 (A_FUV=2.2 mag), and then decreases by 1.1 mag during 7 Gyr down to z=0. The dust attenuation maximum is reached 2 Gyr after the SFRD peak, implying a contribution from the intermediate-mass stars to the dust production at z<2.Comment: 23 pages, 15 figures, accepted for publication in A&

    Towards coordinated site monitoring and common strategies for mitigation of Radio Frequency Interference at the Italian radio telescopes

    Get PDF
    We present a project to implement a national common strategy for the mitigation of the steadily deteriorating Radio Frequency Interference (RFI) situation at the Italian radio telescopes. The project involves the Medicina, Noto, and Sardinia dish antennas and comprised the definition of a coordinated plan for site monitoring as well as the implementation of state-of-the-art hardware and software tools for RFI mitigation. Coordinated monitoring of frequency bands up to 40 GHz has been performed by means of continuous observations and dedicated measurement campaigns with fixed stations and mobile laboratories. Measurements were executed on the frequency bands allocated to the radio astronomy and space research service for shared or exclusive use and on the wider ones employed by the current and under-development receivers at the telescopes. Results of the monitoring campaigns provide a reference scenario useful to evaluate the evolution of the interference situation at the telescopes sites and a case series to test and improve the hardware and software tools we conceived to counteract radio frequency interference. We developed a multi-purpose digital backend for high spectral and time resolution observations over large bandwidths. Observational results demonstrate that the spectrometer robustness and sensitivity enable the efficient detection and analysis of interfering signals in radio astronomical data. A prototype off-line software tool for interference detection and flagging has been also implemented. This package is capable to handle the huge amount of data delivered by the most modern instrumentation on board of the Italian radio telecsopes, like dense focal plane arrays, and its modularity easen the integration of new algorithms and the re-usability in different contexts or telescopes.Comment: 39 pages, 10 Figures and 7 Tables. INAF Technical Report n. 149 (2022). http://hdl.handle.net/20.500.12386/3208

    The VVDS type-1 AGN sample: The faint end of the luminosity function

    Get PDF
    In a previous paper (Gavignaud et al. 2006), we presented the type-1 Active Galactic Nuclei (AGN) sample obtained from the first epoch data of the VIMOS-VLT Deep Survey (VVDS). The sample consists of 130 faint, broad-line AGN with redshift up to z=5 and 17.5< I <24.0, selected on the basis of their spectra. In this paper we present the measurement of the Optical Luminosity Function up to z=3.6 derived from this sample, we compare our results with previous results from brighter samples both at low and at high redshift. Our data, more than one magnitude fainter than previous optical surveys, allow us to constrain the faint part of the luminosity function up to high redshift. By combining our faint VVDS sample with the large sample of bright AGN extracted from the SDSS DR3 (Richards et al., 2006b) and testing a number of different evolutionary models, we find that the model which better represents the combined luminosity functions, over a wide range of redshift and luminosity, is a luminosity dependent density evolution (LDDE) model, similar to those derived from the major X-surveys. Such a parameterization allows the redshift of the AGN space density peak to change as a function of luminosity and explains the excess of faint AGN that we find at 1.0< z <1.5. On the basis of this model we find, for the first time from the analysis of optically selected samples, that the peak of the AGN space density shifts significantly towards lower redshift going to lower luminosity objects. This result, already found in a number of X-ray selected samples of AGN, is consistent with a scenario of "AGN cosmic downsizing", in which the density of more luminous AGN, possibly associated to more massive black holes, peaks earlier in the history of the Universe, than that of low luminosity ones.Comment: 13 pages, 10 figures, submitted to A&

    Two-dimensional kinematics of SLACS lenses - IV. The complete VLT-VIMOS data set

    Get PDF
    This paper presents the full VLT/VIMOS-IFU data set and related data products from an ESO Large Programme with the observational goal of obtaining two-dimensional kinematic data of early-type lens galaxies, out to one effective radius. The sample consists of 17 early-type galaxies (ETG) selected from the SLACS gravitational-lens survey. The galaxies cover the redshift range from 0.08 to 0.35 and have stellar velocity dispersions between 200 and 350 km/s. This programme is complemented by a similar observational programme on Keck, using long-slit spectroscopy. In combination with multi-band imaging data, the kinematic data provide stringent constraints on the inner mass profiles of ETGs beyond the local universe. Our Large Programme thus extends studies of nearby early-type galaxies (e.g. SAURON/ATLAS3D) by an order of magnitude in distance and toward higher masses. We provide an overview of our observational strategy, the data products (luminosity-weighted spectra and Hubble Space Telescope images) and derived products (i.e. two-dimensional fields of velocity dispersions and streaming motions) that have been used in a number of published and forthcoming lensing, kinematic and stellar-population studies.These studies also pave the way for future studies of early-type galaxies at z=1 with the upcoming extremely large telescopes.Comment: 13 pages, 7 figures, 2 tables; typos corrected; accepted for publication in MNRA

    Two-dimensional kinematics of SLACS lenses: II. Combined lensing and dynamics analysis of early-type galaxies at z = 0.08 - 0.33

    Get PDF
    We present the first detailed analysis of the mass and dynamical structure of a sample of six early-type lens galaxies, selected from the Sloan Lens ACS Survey, in the redshift range 0.08 < z < 0.33. Both Hubble Space Telescope (HST)/ACS high-resolution imaging and VLT VIMOS integral field spectroscopy are available for these systems. The galaxies are modelled - under the assumptions of axial symmetry and two-integral stellar distribution function - by making use of the CAULDRON code, which self-consistently combines gravitational lensing and stellar dynamics, and is fully embedded within the framework of Bayesian statistics. The principal results of this study are: (i) all galaxies in the sample are well described by a simple axisymmetric power-law profile for the total density, with a logarithmic slope gamma very close to isothermal ( = 1.98 +/- 0.05 and an intrinsic spread close to 5 per cent) showing no evidence of evolution over the probed range of redshift; (ii) the axial ratio of the total density distribution is rounder than 0.65 and in all cases, except for a fast rotator, does not deviate significantly from the flattening of the intrinsic stellar distribution; (iii) the dark matter fraction within the effective radius has a lower limit of about 15 to 30 per cent; (iv) the sample galaxies are only mildly anisotropic, with delta <= 0.16; (v) the physical distinction among slow and fast rotators, quantified by the v/sigma ratio and the intrinsic angular momentum, is already present at z > 0.1. Altogether, early-type galaxies at z = 0.08 - 0.33 are found to be markedly smooth and almost isothermal systems, structurally and dynamically very similar to their nearby counterparts. (Abridged)Comment: MNRAS, in press. 17 pages, 18 figure

    Sardinia Array Demonstrator: Instrument Overview and Status

    Get PDF
    In the framework of the Square Kilometer Array (SKA) project, the Italian Institute for Astrophysics (INAF) has addressed several efforts in the design and prototyping of aperture arrays for low-frequency radio astronomical research. The Sardinia Array Demonstrator (SAD) is a national project aimed to develop know-how in this area and to test different architectural technologies and calibration algorithms. SAD consists of 128 prototypical dual-polarized Vivaldi antennas designed to operate at radio frequencies below 650 MHz. The antennas will be deployed at the Sardinia Radio Telescope’s site with a versatile approach able to provide two different array configurations: (i) all antennas grouped in one large station or (ii) spread among a core plus few satellite stations. This paper provides an overview of the SAD project from an instrumental point of view, and illustrates its status after 2 years from its start

    The Sardinia Radio Telescope . From a technological project to a radio observatory

    Get PDF
    Context. The Sardinia Radio Telescope (SRT) is the new 64 m dish operated by the Italian National Institute for Astrophysics (INAF). Its active surface, comprised of 1008 separate aluminium panels supported by electromechanical actuators, will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested: a 7-beam K-band receiver, a mono-feed C-band receiver, and a coaxial dual-feed L/P band receiver. The SRT was officially opened in September 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the scientific capabilities of the SRT. Aims: The scientific commissioning phase, carried out in the 2012-2015 period, proceeded in stages following the implementation and/or fine-tuning of advanced subsystems such as the active surface, the derotator, new releases of the acquisition software, etc. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope subsystems for further optimization. As a result, the overall telescope performance has been significantly improved. Methods: As part of the scientific commissioning activities, different observing modes were tested and validated, and the first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomer-oriented software tools to support future observers on site. In the following, we refer to the overall scientific commissioning and software development activities as astronomical validation. Results: The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as part of European networks. As a result, the SRT started to participate (in shared-risk mode) in European VLBI Network (EVN) and Large European Array for Pulsars (LEAP) observing sessions in early 2014. The validation of single-dish operations for the suite of SRT first light receivers and backends continued in the following year, and was concluded with the first call for shared-risk early-science observations issued at the end of 2015. As discussed in the paper, the SRT capabilities were tested (and optimized when possible) for several different observing modes: imaging, spectroscopy, pulsar timing, and transients
    corecore