106 research outputs found
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
Augmenter of liver regeneration
‘Augmenter of liver regeneration’ (ALR) (also known as hepatic stimulatory substance or hepatopoietin) was originally found to promote growth of hepatocytes in the regenerating or injured liver. ALR is expressed ubiquitously in all organs, and exclusively in hepatocytes in the liver. ALR, a survival factor for hepatocytes, exhibits significant homology with ERV1 (essential for respiration and viability) protein that is essential for the survival of the yeast, Saccharomyces cerevisiae. ALR comprises 198 to 205 amino acids (approximately 22 kDa), but is post-translationally modified to three high molecular weight species (approximately 38 to 42 kDa) found in hepatocytes. ALR is present in mitochondria, cytosol, endoplasmic reticulum, and nucleus. Mitochondrial ALR may be involved in oxidative phosphorylation, but also functions as sulfhydryl oxidase and cytochrome c reductase, and causes Fe/S maturation of proteins. ALR, secreted by hepatocytes, stimulates synthesis of TNF-α, IL-6, and nitric oxide in Kupffer cells via a G-protein coupled receptor. While the 22 kDa rat recombinant ALR does not stimulate DNA synthesis in hepatocytes, the short form (15 kDa) of human recombinant ALR was reported to be equipotent as or even stronger than TGF-α or HGF as a mitogen for hepatocytes. Altered serum ALR levels in certain pathological conditions suggest that it may be a diagnostic marker for liver injury/disease. Although ALR appears to have multiple functions, the knowledge of its role in various organs, including the liver, is extremely inadequate, and it is not known whether different ALR species have distinct functions. Future research should provide better understanding of the expression and functions of this enigmatic molecule
Fauna used in popular medicine in Northeast Brazil
<p>Abstract</p> <p>Background</p> <p>Animal-based remedies constitute an integral part of Brazilian Traditional Medicine. Due to its long history, zootherapy has in fact become an integral part of folk medicine both in rural and urban areas of the country. In this paper we summarize current knowledge on zootherapeutic practices in Northeast of Brazil, based on information compiled from ethnobiological scientific literature.</p> <p>Methods</p> <p>In order to examine the diversity of animals used in traditional medicine in Northeast of Brazil, all available references or reports of folk remedies based on animals sources were examined. 34 sources were analyzed. Only taxa that could be identified to species level were included in assessment of medicinal animal species. Scientific names provided in publications were updated.</p> <p>Results</p> <p>The review revealed that at least 250 animal species (178 vertebrates and 72 invertebrates) are used for medicinal purposes in Northeast of Brazil. The inventoried species comprise 10 taxonomic categories and belong to 141 Families. The groups with the greatest number of species were fishes (n = 58), mammals (n = 47) and reptiles (n = 37). The zootherapeutical products are used for the treatment of different illnesses. The most widely treated condition were asthma, rheumatism and sore throat, conditions, which had a wide variety of animals to treat them with. Many animals were used for the treatment of multiple ailments. Beyond the use for treating human diseases, zootherapeutical resources are also used in ethnoveterinary medicine</p> <p>Conclusion</p> <p>The number of medicinal species catalogued was quite expressive and demonstrate the importance of zootherapy as alternative therapeutic in Northeast of Brazil. Although widely diffused throughout Brazil, zootherapeutic practices remain virtually unstudied. There is an urgent need to examine the ecological, cultural, social, and public health implications associated with fauna usage, including a full inventory of the animal species used for medicinal purposes and the socio-cultural context associated with their consumption.</p
The neurobiology of mouse models syntenic to human chromosome 15q
Autism is a neurodevelopmental disorder that manifests in childhood as social behavioral abnormalities, such as abnormal social interaction, impaired communication, and restricted interest or behavior. Of the known causes of autism, duplication of human chromosome 15q11–q13 is the most frequently associated cytogenetic abnormality. Chromosome 15q11–q13 is also known to include imprinting genes. In terms of neuroscience, it contains interesting genes such as Necdin, Ube3a, and a cluster of GABAA subunits as well as huge clusters of non-coding RNAs (small nucleolar RNAs, snoRNAs). Phenotypic analyses of mice genetically or chromosomally engineered for each gene or their clusters on a region of mouse chromosome seven syntenic to human 15q11–q13 indicate that this region may be involved in social behavior, serotonin metabolism, and weight control. Further studies using these models will provide important clues to the pathophysiology of autism. This review overviews phenotypes of mouse models of genes in 15q11–q13 and their relationships to autism
- …