13 research outputs found

    Origène et Les enseignements de Silvain (Nag Hammadi Codex VII,4)

    Get PDF

    Comparison of [18F]DOPA and [68Ga]DOTA-TOC as a PET imaging tracer before peptide receptor radionuclide therapy

    Get PDF
    BACKGROUND: In treatment of neuroendocrine neoplasms (NENs), confirmation of somatostatin receptor expression with 68Ga-DOTA somatostatin analogues is mandatory to determine eligibility for peptide receptor radionuclide therapy (PRRT). [18F]DOPA can detect additional lesions compared to [68Ga]DOTA-TOC. The aim of this study was to explore differences in tumour detection of both tracers and their relevance for selecting patients for PRRT. We retrospectively studied eight patients with NENs who underwent both [68Ga]DOTA-TOC and carbidopa-enhanced [18F]DOPA PET/CT, before first-time PRRT with [177Lu]DOTA-TATE. Tracer order was influenced due to stock availability or to detect suspected metastases with a second tracer. On CT, disease control was defined as a lesion showing complete response, partial response, or stable disease, according to RECIST 1.1. CRITERIA: RESULTS: Seven patients with in total 89 lesions completed four infusions of 7.4 GBq [177Lu]DOTA-TATE, one patient received only two cycles. Before treatment, [18F]DOPA PET/CT detected significantly more lesions than [68Ga]DOTA-TOC PET/CT (79 vs. 62, p < .001). After treatment, no difference in number of lesions with disease control was found for [18F]DOPA-only (5/27) and [68Ga]DOTA-TOC-only lesions (4/10, p = .25). [18F]DOPA detected more liver metastases (24/27) compared to [68Ga]DOTA-TOC (7/10, p = .006). Six patients showed inpatient heterogeneity in treatment response between [18F]DOPA-only and [68Ga]DOTA-TOC-only lesions. CONCLUSIONS: Response to PRRT with [177Lu]DOTA-TATE was comparable for both [68Ga]DOTA-TOC- and [18F]DOPA-only NEN lesions. [18F]DOPA may be capable of predicting response to PRRT while finding more lesions compared to [68Ga]DOTA-TOC, although these additional lesions are often small of size and undetected by diagnostic CT

    Diagnosing pancreatic neuroendocrine tumors in patients with multiple endocrine neoplasia type 1 in daily practice

    Get PDF
    Background: In multiple endocrine neoplasia type 1 (MEN1), pancreatic neuroendocrine tumors (PanNETs) have a high prevalence and represent the main cause of death. This study aimed to assess the diagnostic accuracy of the currently used conventional pancreatic imaging techniques and the added value of fine needle aspirations (FNAs). Methods: Patients who had at least one imaging study were included from the population-based MEN1 database of the DutchMEN Study Group from 1990 to 2017. Magnetic resonance imaging (MRI), computed tomography (CT), endoscopic ultrasonography (EUS), FNA, and surgical resection specimens were obtained. The first MRI, CT, or EUS was considered as the index test. For a comparison of the diagnostic accuracy of MRI versus CT, patients with their index test taken between 2010 and 2017 were included. The reference standard consisted of surgical histopathology or radiological follow-up. ResultsA total of 413 patients (92.8% of the database) underwent 3,477 imaging studies. The number of imaging studies per patient increased, and a preference for MRI was observed in the last decade. Overall diagnostic accuracy was good with a positive (PPV) and negative predictive value (NPV) of 88.9% (95% confidence interval, 76.0-95.6) and 92.8% (89.4-95.1), respectively, for PanNET in the pancreatic head and 92.0% (85.3-96.0) and 85.3% (80.5-89.1), respectively, in the body/tail. For MRI, PPV and NPV for pancreatic head tumors were 100% (76.1-100) and 87.1% (76.3-93.6) and for CT, 60.0% (22.9-88.4) and 70.4% (51.3-84.3), respectively. For body/tail tumors, PPV and NPV were 91.3% (72.0-98.8) and 87.0% (75.3-93.9), respectively, for MRI and 100% (74.9-100) and 77.8% (54.3-91.5), respectively, for CT. Pathology confirmed a PanNET in 106 out of 110 (96.4%) resection specimens. FNA was performed on 34 lesions in 33 patients and was considered PanNET in 24 [all confirmed PanNET by histology (10) or follow-up (14)], normal/cyst/unrepresentative in 6 (all confirmed PanNET by follow-up), and adenocarcinoma in 4 (2 confirmed and 2 PanNET). Three patients, all older than 60 years, had a final diagnosis of pancreatic adenocarcinoma. Conclusion: As the accuracy for diagnosing MEN1-related PanNET of MRI was higher than that of CT, MRI should be the preferred (non-invasive) imaging modality for PanNET screening/surveillance. The high diagnostic accuracy of pancreatic imaging and the sporadic occurrence of pancreatic adenocarcinoma question the need for routine (EUS-guided) FNA

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochromecoxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons,and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation.Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p

    Determinants and mediating mechanisms of quality of life and disease-specific symptoms among thyroid cancer patients: the design of the WaTCh study

    Get PDF
    BACKGROUND: Thyroid cancer (TC) patients are understudied but appear to be at risk for poor physical and psychosocial outcomes. Knowledge of the course and determinants of these deteriorated outcomes is lacking. Furthermore, little is known about mediating biological mechanisms. OBJECTIVES: The WaTCh-study aims to; 1. Examine the course of physical and psychosocial outcomes. 2. Examine the association of demographic, environmental, clinical, physiological, and personality characteristics to those outcomes. In other words, who is at risk? 3. Reveal the association of mediating biological mechanisms (inflammation, kynurenine pathway) with poor physical and psychological outcomes. In other words, why is a person at risk? DESIGN AND METHODS: Newly diagnosed TC patients from 13 Dutch hospitals will be invited. Data collection will take place before treatment, and at 6, 12 and 24 months after diagnosis. Sociodemographic and clinical information is available from the Netherlands Cancer Registry. Patients fill-out validated questionnaires at each time-point to assess quality of life, TC-specific symptoms, physical activity, anxiety, depression, health care use, and employment. Patients are asked to donate blood three times to assess inflammation and kynurenine pathway. Optionally, at each occasion, patients can use a weighing scale with bioelectrical impedance analysis (BIA) system to assess body composition; can register food intake using an online food diary; and can wear an activity tracker to assess physical activity and sleep duration/quality. Representative Dutch normative data on the studied physical and psychosocial outcomes is already available. IMPACT: WaTCh will reveal the course of physical and psychosocial outcomes among TC patients over time and answers the question who is at risk for poor outcomes, and why. This knowledge can be used to provide personalized information, to improve screening, to develop and provide tailored treatment strategies and supportive care, to optimize outcomes, and ultimately increase the number of TC survivors that live in good health

    "The Teachings of Silvanus" From the Library of Nag Hammadi

    No full text

    Ghrelinoma

    No full text

    Ghrelinoma

    No full text
    corecore