17 research outputs found

    DNA methylation predicts age and provides insight into exceptional longevity of bats

    Get PDF
    Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression

    DNA methylation predicts age and provides insight into exceptional longevity of bats

    Get PDF
    This work was supported by a Paul G. Allen Frontiers Group grant to S.H., the University of Maryland, College of Computer, Mathematical and Natural Sciences to G.S.W., an Irish Research Council Consolidator Laureate Award to E.C.T., a UKRI Future Leaders Fellowship (MR/T021985/1) to S.C.V. and a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to P.A.F. S.C.V. and P.D. were supported by a Max Planck Research Group awarded to S.C.V. by the Max Planck Gesellschaft, and S.C.V. and E.Z.L. were supported by a Human Frontiers Science Program Grant (RGP0058/2016) awarded to S.C.V. L.J.G. was supported by an NSERC PGS-D scholarship.Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.Publisher PDFPeer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Incidencia de Citrus tristeza virus (CTV) en áreas citrícolas de Cuba y caracterización parcial de aislados virales. [Incidence of Citrus tristeza virus (CTV) in citrus areas of Cuba and partial characterization of viral isolates.]. FVTO-20.

    No full text
    RESUMEN.Citrus tristeza virus (CTV) es el patógeno de origen viral que causa más pérdidas económicas al cultivo de los cítricos. En Cuba, los cambios tecnológicos introducidos en la citricultura como consecuencia de la detección de huanglongbing de los cítricos (HLB), pudieran influir sobre la incidencia de la enfermedad y la composición de los genotipos en las poblaciones de aislados del virus.ABSTRACT.Citrus tristeza virus (CTV) is the pathogen of viral origin that causes more economic losses to the cultivation of citrus. In Cuba, the technological changes introduced in citriculture as a consequence of the detection of citrus huanglongbing (HLB), could influence the disease incidence and the genotypes composition in populations of virus isolates
    corecore