1,054 research outputs found

    Semiclassical theory for small displacements

    Full text link
    Characteristic functions contain complete information about all the moments of a classical distribution and the same holds for the Fourier transform of the Wigner function: a quantum characteristic function, or the chord function. However, knowledge of a finite number of moments does not allow for accurate determination of the chord function. For pure states this provides the overlap of the state with all its possible rigid translations (or displacements). We here present a semiclassical approximation of the chord function for large Bohr-quantized states, which is accurate right up to a caustic, beyond which the chord function becomes evanescent. It is verified to pick out blind spots, which are displacements for zero overlaps. These occur even for translations within a Planck area of the origin. We derive a simple approximation for the closest blind spots, depending on the Schroedinger covariance matrix, which is verified for Bohr-quantized states.Comment: 16 pages, 4 figures

    Uniform approximation for the overlap caustic of a quantum state with its translations

    Full text link
    The semiclassical Wigner function for a Bohr-quantized energy eigenstate is known to have a caustic along the corresponding classical closed phase space curve in the case of a single degree of freedom. Its Fourier transform, the semiclassical chord function, also has a caustic along the conjugate curve defined as the locus of diameters, i.e. the maximal chords of the original curve. If the latter is convex, so is its conjugate, resulting in a simple fold caustic. The uniform approximation through this caustic, that is here derived, describes the transition undergone by the overlap of the state with its translation, from an oscillatory regime for small chords, to evanescent overlaps, rising to a maximum near the caustic. The diameter-caustic for the Wigner function is also treated.Comment: 14 pages, 9 figure

    Tectonosedimentary evolution of the Coastal Cordillera and Central Depression of south-Central Chile (36°30′-42°S)

    Get PDF
    The forearc of south-central Chile (36°30′-42°S) is characterized by the presence of a Coastal Cordillera and a low lying area known as the Central Depression. The origin of these morphostructural units has been largely debated. They have been ascribed to different ages between the Cretaceous and the Pliocene, and tectonic causes that involve extensional or contractional deformation and have been related to Andean evolution or accretionary processes in the forearc. To investigate the geologic evolution of the Coastal Cordillera and Central Depression in the cited area, we based on stratigraphy, sedimentology, geochronology (U[sbnd]Pb, LA-ICP-MS), structural geology, and geomorphology. Our studies, which are based on our own data and a thorough bibliographic review, indicate the following sequence of events in the tectono-sedimentary evolution of the forearc of south-central Chile during the late Cenozoic. The area was subjected to extensional tectonics caused by slab rollback during the Oligocene-early Miocene, resulting in the genesis of a series of basins filled with volcanic, continental, and marine deposits that extended from the present Chilean coast to the retroac. The extensional basins were tectonically inverted during the late Early-Late Miocene, and most of the forearc became a positive relief that was subjected to fluvial erosion. The West Andean Thrust, a major reverse west verging fault in the limit between the Central Depression and the Andean Cordillera, caused significant uplift of the western flank of the Andes. This triggered flexural subsidence and the accumulation of coarse-grained deposits in the forearc during the Pliocene-Pleistocene. The sudden increase of sediment flux to the trench during this period caused a change from non-accretion or subduction erosion to accretion in the margin of south-central Chile. Progressive growth of the accretionary wedge gave birth to a forearc high, the Coastal Cordillera, which was uplifted in the last 2 Ma. Some forearc areas placed above subducted oceanic fracture zones did not experience uplift during this period due to the significant transport of fluid that inhibited the deformation of the accretionary wedge. Our studies show that the late Cenozoic tectono-sedimentary evolution of the forearc in the study area is complex and involves different processes related to Andean evolution in the first stage and accretionary processes acting exclusively in the forearc in a second stage. The Coastal Cordillera and the Central Depression of south-central Chile were developed in the last 2 Ma and are much younger than classically considered.Fil: Encinas, A.. Universidad de Concepción; ChileFil: Sagripanti, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Rodríguez, M.P.. Universidad de Atacama.; ChileFil: Orts, Darío Leandro. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Anavalón, A.. Universidad de Concepción; ChileFil: Giroux, P.. Universidad de Concepción; ChileFil: Otero, J.. Universidad Austral de Chile; ChileFil: Echaurren Gonzalez, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Zambrano, P.. Universidad Andrés Bello; ChileFil: Valencia, V.. Washington State University; Estados Unido

    Semiclassical Evolution of Dissipative Markovian Systems

    Full text link
    A semiclassical approximation for an evolving density operator, driven by a "closed" hamiltonian operator and "open" markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra "open" term is added to the double Hamiltonian by the non-hermitian part of the Lindblad operators in the general case of dissipative markovian evolution. The particular case of generic hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighborhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further "small-chord" approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions.Comment: 33 pages - accepted to J. Phys.

    Molecular Characterization of Rickettsial Agents in Ticks (Acari: Ixodidae) from Sri Lanka

    Get PDF
    Because the majority of spotted fever group rickettsiae are transmitted to humans by tick bites, it is important to understand which ticks might play a role in transmission of rickettsial pathogens in Sri Lanka. The purpose of our study was to conduct molecular surveillance of 847 ticks collected in different locations in central Sri Lanka to determine which were infected with Rickettsia and Anaplasmataceae. Molecular methods were used to identify the ticks and the agents detected. Most ticks (Amblyomma, Haemaphysalis, and Rhipicephalus) were collected by flagging, and lower number was collected from dogs, cattle, pigs, a pangolin, and tortoises. Five spotted fever genotypes were identified: a Rickettsia africae-like agent in Amblyomma larvae, Rhipicephalus massiliae and a related genotype identified in association with the tropical type of Rhipicephalus sanguineus from dogs and Rhipicephalus haemaphysaloides from dogs and cattle, and Candidatus R. kellyi and another novel genotype (SL94) in R. haemaphysaloides. Twenty-three ticks were positive for Anaplasmataceae, including one Anaplasma and two Ehrlichia genotypes. Because the sequence database for both ticks and rickettsial agents from Sri Lanka and southern India is not extensive, additional molecular characterization of the tick species of Sri Lanka and their rickettsial agents is required to understand their pathogenic potential more completely. However, several of the agents we identified in this survey may well be pathogenic for humans and domestic animals, and should be considered as a part of epidemiological surveillance and patient management

    Myoelectric activity during electromagnetic resistance alone and in combination with variable resistance or eccentric overload.

    Get PDF
    The purpose of this study was to compare the effects of electromagnetic resistance alone, as well as in combination with variable resistance or accentuated eccentric methods, with traditional dynamic constant external resistance exercise on myoelectric activity during elbow flexion. The study employed a within-participant randomized, cross-over design whereby 16 young, resistance-trained male and female volunteers performed elbow flexion exercise under each of the following conditions: using a dumbbell (DB); using a commercial electromagnetic resistance device (ELECTRO); variable resistance (VR) using a setting on the device that attempts to match the level of resistance to the human strength curve, and; eccentric overload (EO) using a setting on the device that increases the load by 50% on the eccentric portion of each repetition. Surface electromyography (sEMG) was obtained for the biceps brachii, brachioradialis and anterior deltoid on each of the conditions. Participants performed the conditions at their predetermined 10 repetition maximum. The order of performance for the conditions was counterbalanced, with trials separated by a 10-minute recovery period. The sEMG was synced to a motion capture system to assess sEMG amplitude at elbow joint angles of 30°, 50°, 70°, 90°, 110°, with amplitude normalized to maximal voluntary isometric contraction. The anterior deltoid showed the largest differences in amplitude between conditions, where median estimates indicated greater concentric sEMG amplitude (~7 to 10%) with EO, ELECTRO and VR compared with DB. Concentric biceps brachii sEMG amplitude was similar between conditions. In contrast, results indicated a greater eccentric amplitude with DB compared to ELECTRO and VR, but unlikely to exceed a 5% difference. Data indicated a greater concentric and eccentric brachioradialis sEMG amplitude with DB compared to all other conditions, but differences were unlikely to exceed 5%. The electromagnetic device tended to produce greater amplitudes in the anterior deltoid, while DB tended to produce greater amplitudes in the brachioradialis; amplitude for the biceps brachii was relatively similar between conditions. Overall, any observed differences were relatively modest, equating to magnitudes of ~5% and not likely greater than 10%. These differences would seem to be of minimal practical significance

    Reduced mortality in COVID-19 patients treated with colchicine: Results from a retrospective, observational study

    Get PDF
    Objectives Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed. We hypothesized that colchicine, by counteracting proinflammatory pathways implicated in the uncontrolled inflammatory response of COVID-19 patients, reduces pulmonary complications, and improves survival. Methods This retrospective study included 71 consecutive COVID-19 patients (hospitalized with pneumonia on CT scan or outpatients) who received colchicine and compared with 70 control patients who did not receive colchicine in two serial time periods at the same institution. We used inverse probability of treatment propensity-score weighting to examine differences in mortality, clinical improvement (using a 7-point ordinary scale), and inflammatory markers between the two groups. Results Amongst the 141 COVID-19 patients (118 [83.7%] hospitalized), 70 (50%) received colchicine. The 21-day crude cumulative mortality was 7.5% in the colchicine group and 28.5% in the control group (P = 0.006; adjusted hazard ratio: 0.24 [95%CI: 0.09 to 0.67]); 21-day clinical improvement occurred in 40.0% of the patients on colchicine and in 26.6% of control patients (adjusted relative improvement rate: 1.80 [95%CI: 1.00 to 3.22]). The strong association between the use of colchicine and reduced mortality was further supported by the diverging linear trends of percent daily change in lymphocyte count (P = 0.018), neutrophilto- lymphocyte ratio (P = 0.003), and in C-reactive protein levels (P = 0.009). Colchicine was stopped because of transient side effects (diarrhea or skin rashes) in 7% of patients. Conclusion In this retrospective cohort study colchicine was associated with reduced mortality and accelerated recovery in COVID-19 patients. This support the rationale for current larger randomized controlled trials testing the safety/efficacy profile of colchicine in COVID-19 patients. Copyright

    Cold Nuclear Matter Effects on J/psi Yields as a Function of Rapidity and Nuclear Geometry in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV

    Full text link
    We present measurements of J/psi yields in d+Au collisions at sqrt(s_NN) = 200 GeV recorded by the PHENIX experiment and compare with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. To remove model dependent systematic uncertainties we also compare the data to a simple geometric model. We find that calculations where the nuclear modification is linear or exponential in the density weighted longitudinal thickness are difficult to reconcile with the forward rapidity data.Comment: 449 authors from 66 institutions, 6 pages, 3 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Azimuthal anisotropy of neutral pion production in Au+Au collisions at sqrt(s_NN) = 200 GeV: Path-length dependence of jet quenching and the role of initial geometry

    Full text link
    We have measured the azimuthal anisotropy of pi0's for 1 < pT < 18 GeV/c for Au+Au collisions at sqrt s_NN = 200 GeV. The observed anisotropy shows a gradual decrease in 3 < pT < 7 - 10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is under-predicted, up to at least 10 GeV/c, by current perturbative QCD (pQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and initial-geometry fluctuations is insufficient to account for this discrepancy. Calculations which implement a path length dependence steeper than what is implied by current pQCD energy-loss models, show reasonable agreement with the data.Comment: 384 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Observation of direct-photon collective flow in sqrt(s_NN)=200 GeV Au+Au collisions

    Get PDF
    The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane was measured for direct photons at midrapidity and transverse momentum (p_T) of 1--13 GeV/c in Au+Au collisions at sqr(s_NN)=200 GeV. Previous measurements of this quantity for hadrons with p_T < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p_T > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p_T > 4 GeV/c the anisotropy for direct photons is consistent with zero, as expected if the dominant source of direct photons is initial hard scattering. However, in the p_T < 4 GeV/c region dominated by thermal photons, we find a substantial direct photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region significantly underpredict the observed v_2.Comment: 384 authors, 6 pages, 3 figures, and 1 table. Submitted to Phys. Rev. Lett. v2 has minor changes to match the submission version. Plain text data tables for the points plotted in the figures are publicly available at http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg126_data.htm
    corecore