19 research outputs found

    Cyclin D mediates tolerance of genome-doubling in cancers with functional p53

    Get PDF
    BACKGROUND: Aneuploidy and chromosomal instability (CIN) are common features of human malignancy that fuel genetic heterogeneity. Although tolerance to tetraploidization, an intermediate state that further exacerbates CIN, is frequently mediated by TP53 dysfunction, we find that some genome-doubled tumours retain wild-type TP53. We sought to understand how tetraploid cells with a functional p53/p21-axis tolerate genome-doubling events. METHOD: We performed quantitative proteomics in a diploid/tetraploid pair within a system of multiple independently derived TP53 wild-type tetraploid clones arising spontaneously from a diploid progenitor. We characterized adapted and acute tetraploidization in a variety of flow cytometry and biochemical assays and tested our findings against human tumours through bioinformatics analysis of the TCGA dataset. RESULTS: Cyclin D1 was found to be specifically overexpressed in early but not late passage tetraploid clones, and this overexpression was sufficient to promote tolerance to spontaneous and pharmacologically induced tetraploidy. We provide evidence that this role extends to D-type cyclins and their overexpression confers specific proliferative advantage to tetraploid cells. We demonstrate that tetraploid clones exhibit elevated levels of functional p53 and p21 but override the p53/p21 checkpoint by elevated expression of cyclin D1, via a stoichiometry-dependent and CDK activity-independent mechanism. Tetraploid cells do not exhibit increased sensitivity to abemaciclib, suggesting that cyclin D-overexpressing tumours might not be specifically amenable to treatment with CDK4/6 inhibitors. CONCLUSION: Our study suggests that D-type cyclin overexpression is an acute event, permissive for rapid adaptation to a genome-doubled state in TP53 wild-type tumours and that its overexpression is dispensable in later stages of tumour progression

    Hypoxia-driven cell motility reflects the interplay between JMY and HIF-1α.

    Get PDF
    Junction-mediating and regulatory protein (JMY) is a novel p53 cofactor that regulates p53 activity during stress. JMY interacts with p300/CBP, which are ubiquitous transcriptional co-activators that interact with a variety of sequence-specific transcription factors, including hypoxia-inducible factor-1α (HIF-1α). In addition, JMY is an actin-nucleating protein, which, through its WH2 domains, stimulates cell motility. In this study, we show that JMY is upregulated during hypoxia in a HIF-1α-dependent manner. The JMY gene contains HIF-responsive elements in its promoter region and HIF-1α is recruited to its promoter during hypoxia. HIF-1α drives transcription of JMY, which accounts for its induction under hypoxia. Moreover, the enhanced cell motility and invasion that occurs during hypoxia requires JMY, as depleting JMY under hypoxic conditions causes decreased cell motility. Our results establish the interplay between JMY and HIF-1α as a new mechanism that controls cell motility under hypoxic stress

    PAX8 promotes tumor cell growth by transcriptionally regulating E2F1 and stabilizing RB protein

    Get PDF
    The retinoblastoma protein (RB)–E2F1 pathway has a central role in regulating the cell cycle. Several PAX proteins (tissue-specific developmental regulators), including PAX8, interact with the RB protein, and thus regulate the cell cycle directly or indirectly. Here, we report that PAX8 expression is frequent in renal cell carcinoma, bladder, ovarian and thyroid cancer cell lines, and that silencing of PAX8 in cancer cell lines leads to a striking reduction in the expression of E2F1 and its target genes, as well as a proteasome-dependent destabilization of RB protein, with the RB1 mRNA level remaining unaffected. Cancer cells expressing PAX8 undergo a G1/S arrest and eventually senesce following PAX8 silencing. We demonstrate that PAX8 transcriptionally regulates the E2F1 promoter directly, and E2F1 transcription is enhanced after RB depletion. RB is recruited to the PAX8-binding site, and is involved in PAX8-mediated E2F1 transcription in cancer cells. Therefore, our results suggest that, in cancer, frequent and persistent expression of PAX8 is required for cell growth control through transcriptional activation of E2F1 expression and upregulation of the RB–E2F1 pathway

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Lysine methylation-dependent binding of 53BP1 to the pRb tumor suppressor.

    No full text
    The retinoblastoma tumor suppressor protein pRb is a key regulator of cell cycle progression and mediator of the DNA damage response. Lysine methylation at K810, which occurs within a critical Cdk phosphorylation motif, holds pRb in the hypophosphorylated growth-suppressing state. We show here that methyl K810 is read by the tandem tudor domain containing tumor protein p53 binding protein 1 (53BP1). Structural elucidation of 53BP1 in complex with a methylated K810 pRb peptide emphasized the role of the 53BP1 tandem tudor domain in recognition of the methylated lysine and surrounding residues. Significantly, binding of 53BP1 to methyl K810 occurs on E2 promoter binding factor target genes and allows pRb activity to be effectively integrated with the DNA damage response. Our results widen the repertoire of cellular targets for 53BP1 and suggest a previously unidentified role for 53BP1 in regulating pRb tumor suppressor activity

    Lysine methylation-dependent binding of 53BP1 to the pRb tumor suppressor.

    No full text
    The retinoblastoma tumor suppressor protein pRb is a key regulator of cell cycle progression and mediator of the DNA damage response. Lysine methylation at K810, which occurs within a critical Cdk phosphorylation motif, holds pRb in the hypophosphorylated growth-suppressing state. We show here that methyl K810 is read by the tandem tudor domain containing tumor protein p53 binding protein 1 (53BP1). Structural elucidation of 53BP1 in complex with a methylated K810 pRb peptide emphasized the role of the 53BP1 tandem tudor domain in recognition of the methylated lysine and surrounding residues. Significantly, binding of 53BP1 to methyl K810 occurs on E2 promoter binding factor target genes and allows pRb activity to be effectively integrated with the DNA damage response. Our results widen the repertoire of cellular targets for 53BP1 and suggest a previously unidentified role for 53BP1 in regulating pRb tumor suppressor activity

    Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1.

    No full text
    The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase 1 (PRMT1) and symmetric dimethylating PRMT5 and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favors proliferation by antagonizing methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell-cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN downregulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity

    E2F-1 regulation by an unusual DNA damage-responsive DP partner subunit

    No full text
    E2F activity is negatively regulated by retinoblastoma protein (pRb) through binding to the E2F-1 subunit. Within the E2F heterodimer, DP proteins are E2F partner subunits that allow proper cell cycle progression. In contrast to the other DP proteins, the newest member of the family, DP-4, downregulates E2F activity. In this study we report an unexpected role for DP-4 in regulating E2F-1 activity during the DNA damage response. Specifically, DP-4 is induced in DNA-damaged cells, upon which it binds to E2F-1 as a non-DNA-binding E2F-1/DP-4 complex. Consequently, depleting DP-4 in cells re-instates E2F-1 activity that coincides with increased levels of chromatin-bound E2F-1, E2F-1 target gene expression and associated apoptosis. Mutational analysis of DP-4 highlighted a C-terminal region, outside the DNA-binding domain, required for the negative control of E2F-1 activity. Our results define a new pathway, which acts independently of pRb and through a biochemically distinct mechanism, involved in negative regulation of E2F-1 activity

    Synergistic functions of E2F7 and E2F8 are critical to suppress stress-induced skin cancer

    Get PDF
    E2F transcription factors are important regulators of the cell cycle, and unrestrained activation of E2F-dependent transcription is considered to be an important driver of tumor formation and progression. Although highly expressed in normal skin and skin cancer, the role of the atypical E2Fs, E2F7 and E2F8, in keratinocyte homeostasis, regeneration and tumorigenesis is unknown. Surprisingly, keratinocyte-specific deletion of E2F7 and E2F8 in mice did not interfere with skin development and wound healing. However, the rate for successful isolation and establishment of E2f7/8-deficient primary keratinocyte cultures was much higher than for wild-type keratinocytes. Moreover, E2f7/8-deficient primary keratinocytes proliferate more efficiently under stress conditions, such as low/high confluence or DNA damage. Application of in vivo stress using the DMBA/TPA skin carcinogenesis protocol revealed that combined inactivation of E2f7/8 enhanced tumorigenesis and accelerated malignant progression. Loss of atypical E2Fs resulted in increased expression of E2F target genes, including E2f1. Additional loss of E2f1 did not rescue, but worsened skin tumorigenesis. We show that loss of E2F7/8 triggers apoptosis via induction of E2F1 in response to stress, indicating that the tumor-promoting effect of E2F7/8 inactivation can be partially compensated via E2F1-dependent apoptosis. Importantly, E2F7/8 repressed a large set of E2F target genes that are highly expressed in human patients with skin cancer. Together, our studies demonstrate that atypical E2Fs act as tumor suppressors, most likely via transcriptional repression of cell cycle genes in response to stress

    The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor

    No full text
    In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex.This work was supported by grants from the Spanish Ministry of Science and Innovation (BFU2009–07453 and BFU2012-31939), PLAN E and FEDER, Consolider-Ingenio 2007–0020, and SGR2009-195 from the Generalitat de Catalunya. J.A. and E.H. are recipients of ICREA Academia Awards (Generalitat de Catalunya
    corecore