26 research outputs found

    Hotel smoking policies and their implementation: a survey of California hotel managers

    No full text
    Introduction Most states in the U.S. permit hotels to allow smoking in some guest rooms, and only five (Indiana, Michigan, North Dakota, Vermont, and Wisconsin) require that all hotel and motel rooms be 100% smoke-free (State and local 100% smokefree hotel and motel guest room laws enacted as of July 3, 2017). Little is known, however, about how hotels’ smoking policies have been implemented. This study examined hotels’ smoking policies and their implementation. Material and Methods A telephone survey of a random sample of 383 California hotel managers was conducted. Results Overall, 60.6% of hotels reported that smoking was prohibited in all guest rooms, and 4.7% reported that smoking was prohibited everywhere on their property. While California law permitted smoking in up to 65% of guest rooms, only 6.9% of rooms were reported as smoking-permitted. Over 90% of hotels had smoking rooms scattered among nonsmoking rooms, and about half of the smoking hotels reported that guests requesting either smoking or nonsmoking rooms were sometimes assigned to the other room type. When guests smoked in nonsmoking rooms fees could be substantial, but were often uncollected. Conclusions Hotel smoking policies and their implementation fall short of protecting nonsmoking guests and workers from exposure to secondhand and thirdhand smoke. Complete indoor smoking bans for all hotels are needed to close existing loopholes. Nonsmokers who wish to protect themselves from exposure to tobacco smoke should avoid hotels that permit smoking and instead stay in completely smoke-free hotels

    When smokers move out and non-smokers move in: residential thirdhand smoke pollution and exposure.

    No full text
    BackgroundThis study examined whether thirdhand smoke (THS) persists in smokers' homes after they move out and non-smokers move in, and whether new non-smoking residents are exposed to THS in these homes.MethodsThe homes of 100 smokers and 50 non-smokers were visited before the residents moved out. Dust, surfaces, air and participants' fingers were measured for nicotine and children's urine samples were analysed for cotinine. The new residents who moved into these homes were recruited if they were non-smokers. Dust, surfaces, air and new residents' fingers were examined for nicotine in 25 former smoker and 16 former non-smoker homes. A urine sample was collected from the youngest resident.ResultsSmoker homes' dust, surface and air nicotine levels decreased after the change of occupancy (p<0.001); however dust and surfaces showed higher contamination levels in former smoker homes than former non-smoker homes (p<0.05). Non-smoking participants' finger nicotine was higher in former smoker homes compared to former non-smoker homes (p<0.05). Finger nicotine levels among non-smokers living in former smoker homes were significantly correlated with dust and surface nicotine and urine cotinine.ConclusionsThese findings indicate that THS accumulates in smokers' homes and persists when smokers move out even after homes remain vacant for 2 months and are cleaned and prepared for new residents. When non-smokers move into homes formerly occupied by smokers, they encounter indoor environments with THS polluted surfaces and dust. Results suggest that non-smokers living in former smoker homes are exposed to THS in dust and on surfaces
    corecore