47 research outputs found
Early-Time Energy Loss in a Strongly-Coupled SYM Plasma
We carry out an analytic study of the early-time motion of a quark in a
strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT
correspondence. Our approach extracts the first thermal effects as a small
perturbation of the known quark dynamics in vacuum, using a double expansion
that is valid for early times and for (moderately) ultrarelativistic quark
velocities. The quark is found to lose energy at a rate that differs
significantly from the previously derived stationary/late-time result: it
scales like T^4 instead of T^2, and is associated with a friction coefficient
that is not independent of the quark momentum. Under conditions representative
of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a
few times smaller than its late-time counterpart. Our analysis additionally
leads to thermally-corrected expressions for the intrinsic energy and momentum
of the quark, in which the previously discovered limiting velocity of the quark
is found to appear naturally.Comment: 39 pages, no figures. v2: Minor corrections and clarifications.
References added. Version to be published in JHE
The Gluonic Field of a Heavy Quark in Conformal Field Theories at Strong Coupling
We determine the gluonic field configuration sourced by a heavy quark
undergoing arbitrary motion in N=4 super-Yang-Mills at strong coupling and
large number of colors. More specifically, we compute the expectation value of
the operator tr[F^2+...] in the presence of such a quark, by means of the
AdS/CFT correspondence. Our results for this observable show that signals
propagate without temporal broadening, just as was found for the expectation
value of the energy density in recent work by Hatta et al. We attempt to shed
some additional light on the origin of this feature, and propose a different
interpretation for its physical significance. As an application of our general
results, we examine when the quark undergoes oscillatory motion,
uniform circular motion, and uniform acceleration. Via the AdS/CFT
correspondence, all of our results are pertinent to any conformal field theory
in 3+1 dimensions with a dual gravity formulation.Comment: 1+38 pages, 16 eps figures; v2: completed affiliation; v3: corrected
typo, version to appear in JHE
Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC
We present the first results of meson production in the K^+K^- decay channel
from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by
the PHENIX detector at RHIC. Precision resonance centroid and width values are
extracted as a function of collision centrality. No significant variation from
the PDG accepted values is observed. The transverse mass spectra are fitted
with a linear exponential function for which the derived inverse slope
parameter is seen to be constant as a function of centrality. These data are
also fitted by a hydrodynamic model with the result that the freeze-out
temperature and the expansion velocity values are consistent with the values
previously derived from fitting single hadron inclusive data. As a function of
transverse momentum the collisions scaled peripheral.to.central yield ratio RCP
for the is comparable to that of pions rather than that of protons. This result
lends support to theoretical models which distinguish between baryons and
mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
J/psi production from proton-proton collisions at sqrt(s) = 200 GeV
J/psi production has been measured in proton-proton collisions at sqrt(s)=
200 GeV over a wide rapidity and transverse momentum range by the PHENIX
experiment at RHIC. Distributions of the rapidity and transverse momentum,
along with measurements of the mean transverse momentum and total production
cross section are presented and compared to available theoretical calculations.
The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/-
0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/-
0.16(sys) GeV/c.Comment: 326 authors, 6 pages text, 4 figures, 1 table, RevTeX 4. To be
submitted to PRL. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Measurement of Single Electron Event Anisotropy in Au+Au Collisions at sqrt(s_NN) = 200 GeV
The transverse momentum dependence of the azimuthal anisotropy parameter v_2,
the second harmonic of the azimuthal distribution, for electrons at
mid-rapidity (|eta| < 0.35) has been measured with the PHENIX detector in Au+Au
collisions at sqrt(s_NN) = 200 GeV. The measurement was made with respect to
the reaction plane defined at high rapidities (|eta| = 3.1 -- 3.9). From the
result we have measured the v_2 of electrons from heavy flavor decay after
subtraction of the v_2 of electrons from other sources such as photon
conversions and Dalitz decay from light neutral mesons. We observe a non-zero
single electron v_2 with a 90% confidence level in the intermediate p_T region.Comment: 330 authors, 11 pages text, RevTeX4, 9 figures, 1 tables. Submitted
to Physical Review C. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Systematic Studies of the Centrality and sqrt(s_NN) Dependence of dE_T/deta and dN_ch/deta in Heavy Ion Collisions at Mid-rapidity
The PHENIX experiment at RHIC has measured transverse energy and charged
particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6,
130 and 200 GeV as a function of centrality. The presented results are compared
to measurements from other RHIC experiments, and experiments at lower energies.
The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants
is consistent with logarithmic scaling for the most central events. The
centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured
incident energies. At RHIC energies the ratio of transverse energy per charged
particle was found independent of centrality and growing slowly with
sqrt(s_NN). A survey of comparisons between the data and available theoretical
models is also presented.Comment: 327 authors, 25 pages text, 19 figures, 17 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Centrality Dependence of Charm Production from Single Electrons in Au+Au Collisions at sqrt(s_NN) = 200 GeV
The PHENIX experiment has measured mid-rapidity transverse momentum spectra
(0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in
Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from
photon conversions and Dalitz decays of light neutral mesons are measured by
introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are
statistically removed. The subtracted ``non-photonic'' electron spectra are
primarily due to the semi-leptonic decays of hadrons containing heavy quarks
(charm and bottom). For all centralities, charm production is found to scale
with the nuclear overlap function, T_AA. For minimum-bias collisions the charm
cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/-
160 (sys.) microbarns.Comment: 326 authors, 4 pages text, 3 figures, 1 table, RevTeX 4. To be
submitted to Physical Review Letters. Plain text data tables for the points
plotted in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Design of the ECCE Detector for the Electron Ion Collider
Preprint submitted to Nuclear Instruments and Methods A. The file archived on this institutional repository has not been certified by peer review.32 pages, 29 figures, 9 tablesThe EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark-gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector.Office of Science in the Department of Energy, the National Science Foundation, and the Los Alamos National
Laboratory Laboratory Directed Research and Development (LDRD) 20200022DR; This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. The work of AANL group are supported by the Science Committee of RA, in the frames of the research project # 21AG-1C028. And we gratefully acknowledge that support of Brookhaven National Lab and the Thomas Jefferson National Accelerator Facility which are operated under contracts DESC0012704 and DE-AC05-06OR23177 respectivel
AI-assisted optimization of the ECCE tracking system at the Electron Ion Collider
arXiv preprint [v2] Fri, 20 May 2022 03:23:44 UTC (2,296 KB) made available under a Creative Commons (CC BY) Attribution Licence, now in press, published by Elsevier: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, available online 17 November 2022 at: https://doi.org/10.1016/j.nima.2022.167748The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector.Office of Nuclear Physics in the Office of Science in the Department of Energy; National Science Foundation, and the Los Alamos National Laboratory Laboratory Directed Research and Development (LDRD) 20200022DR
Measuring centrality with slow protons in proton-nucleus collisions at 18 GeV/c
Journals published by the American Physical Society can be found at http://publish.aps.org