4,945 research outputs found

    Boundary resistance in magnetic multilayers

    Full text link
    Quasiclassical boundary conditions for electrochemical potentials at the interface between diffusive ferromagnetic and non-magnetic metals are derived for the first time. An expression for the boundary resistance accurately accounts for the momentum conservation law as well as essential gradients of the chemical potentials. Conditions are established at which spin-asymmetry of the boundary resistance has positive or negative sign. Dependence of the spin asymmetry and the absolute value of the boundary resistance on the exchange splitting of the conduction band opens up new possibility to estimate spin polarization of the conduction band of ferromagnetic metals. Consistency of the theory is checked on existing experimental data.Comment: 8 pages, 3 figures, designed using IOPART styl

    A Discrete Version of the Inverse Scattering Problem and the J-matrix Method

    Full text link
    The problem of the Hamiltonian matrix in the oscillator and Laguerre basis construction from the S-matrix is treated in the context of the algebraic analogue of the Marchenko method.Comment: 11 pages. The Laguerre basis case is adde

    Inelastic Decay of Electrons in the Shockley-type Metal-Organic Interface States

    Get PDF
    We present a theoretical study of lifetimes of interface states (IS) on metal-organic interfaces PTCDA/Ag(111), NTCDA/Ag(111), PFP/Ag(111), and PTCDA/Ag(100), describing and explaining the recent experimental data. By means of unfolding the band structure of one of the interfaces under study onto the Ag(111) Brillouin zone we demonstrate, that the Brillouin zone folding upon organic monolayer deposition plays a minor role in the phase space for electron decay, and hence weakly affects the resulting lifetimes. The presence of the unoccupied molecular states below the IS gives a small contribution to the IS decay rate mostly determined by the change of the phase space of bulk states upon the energy shift of the IS. The calculated lifetimes follow the experimentally observed trends. In particular, we explain the trend of the unusual increase of the IS lifetimes with rising temperature.Comment: 8 pages, 5 figure

    Nonlinear resonance in a three-terminal carbon nanotube resonator

    Full text link
    The RF-response of a three-terminal carbon nanotube resonator coupled to RF-transmission lines is studied by means of perturbation theory and direct numerical integration. We find three distinct oscillatory regimes, including one regime capable of exhibiting very large hysteresis loops in the frequency response. Considering a purely capacitive transduction, we derive a set of algebraic equations which can be used to find the output power (S-parameters) for a device connected to transmission lines with characteristic impedance Z0Z_0.Comment: 16 pages, 8 figure

    Theory of AC Josepson Effect in Superconducting Constrictions

    Full text link
    We have developed a microscopic theory of ac Josephson effect in short ballistic superconducting constrictions with arbitrary electron transparency and in constrictions with diffusive electron transport. The theory is valid for arbitrary miscroscopic structure of the superconducting electrodes of the constriction. As applications of the theory we study smearing of the subgap current singularities by pair-breaking effects and also the structure of these singularities in the constrictions between the composite S/N electrodes with the proximity-induced gap in the normal layer.Comment: 11 pages, RevTex, 3 figures available on reques

    NN potentials from inverse scattering in the J-matrix approach

    Get PDF
    An approximate inverse scattering method [7,8] has been used to construct separable potentials with the Laguerre form factors. As an application, we invert the phase shifts of proton-proton in the 1S0^1S_0 and 3P23F2^3P_2-^3F_2 channels and neutron-proton in the 3S13D1^3S_1-^3D_1 channel elastic scattering. In the latter case the deuteron wave function of a realistic npnp potential was used as input.Comment: LaTex2e, 17 pages, 3 Postscript figures; corrected typo

    Semiclassical theory of weak antilocalization and spin relaxation in ballistic quantum dots

    Get PDF
    We develop a semiclassical theory for spin-dependent quantum transport in ballistic quantum dots. The theory is based on the semiclassical Landauer formula, that we generalize to include spin-orbit and Zeeman interaction. Within this approach, the orbital degrees of freedom are treated semiclassically, while the spin dynamics is computed quantum mechanically. Employing this method, we calculate the quantum correction to the conductance in quantum dots with Rashba and Dresselhaus spin-orbit interaction. We find a strong sensitivity of the quantum correction to the underlying classical dynamics of the system. In particular, a suppression of weak antilocalization in integrable systems is observed. These results are attributed to the qualitatively different types of spin relaxation in integrable and chaotic quantum cavities.Comment: 20 page

    Quasi-periodic modulation of solar and stellar flaring emission by magnetohydrodynamic oscillations in a nearby loop

    Get PDF
    We propose a new model for quasi-periodic modulation of solar and stellar flaring emission. Fast magnetoacoustic oscillations of a non-flaring loop can interact with a nearby flaring active region. This interaction occurs when part of the oscillation situated outside the loop reaches the regions of steep gradients in magnetic field within an active region and produces periodic variations of electric current density. The modulation depth of these variations is a few orders of magnitude greater than the amplitude of the driving oscillation. The variations of the current can induce current-driven plasma micro-instabilities and thus anomalous resistivity. This can periodically trigger magnetic reconnection, and hence acceleration of charged particles, producing quasi-periodic pulsations of X-ray, optical and radio emission at the arcade footpoints

    Strong-Pinning Effects in Low-Temperature Creep: Charge-Density Waves in TaS_3

    Full text link
    Nonlinear conduction in the quasi-one dimensional conductor o-TaS_3 has been studied in the low-temperature region down to 30 mK. It was found that at temperatures below a few Kelvins the current-voltage (I-V) characteristics consist of several branches. The temperature evolution of the I-V curve proceeds through sequential freezing-out of the branches. The origin of each branch is attributed to a particular strong pinning impurity type. Similar behavior is expected for other physical systems with collective transport (spin-density waves, Wigner crystals, vortex lattices in type-II superconductors etc.) in the presence of strong pinning centers.Comment: 11 pages, 3 ps figures, Revtex, To be published in Phys. Rev. Letters (1997
    corecore