157 research outputs found

    Detection of Epigenomic Network Community Oncomarkers

    Get PDF
    In this paper we propose network methodology to infer prognostic cancer biomarkers based on the epigenetic pattern DNA methylation. Epigenetic processes such as DNA methylation reflect environmental risk factors, and are increasingly recognised for their fundamental role in diseases such as cancer. DNA methylation is a gene-regulatory pattern, and hence provides a means by which to assess genomic regulatory interactions. Network models are a natural way to represent and analyse groups of such interactions. The utility of network models also increases as the quantity of data and number of variables increase, making them increasingly relevant to large-scale genomic studies. We propose methodology to infer prognostic genomic networks from a DNA methylation-based measure of genomic interaction and association. We then show how to identify prognostic biomarkers from such networks, which we term `network community oncomarkers'. We illustrate the power of our proposed methodology in the context of a large publicly available breast cancer dataset

    Sensitivity of asymmetric rate-dependent critical systems to initial conditions: insights into cellular decision making

    Get PDF
    The work reported here aims to address the effects of time-dependent parameters and stochasticity on decision-making in biological systems. We achieve this by extending previous studies that resorted to simple normal forms. Yet, we focus primarily on the issue of the system's sensitivity to initial conditions in the presence of different noise distributions. In addition, we assess the impact of two-way sweeping through the critical region of a canonical Pitchfork bifurcation with a constant external asymmetry. The parallel with decision-making in bio-circuits is performed on this simple system since it is equivalent in its available states and dynamics to more complex genetic circuits. Overall, we verify that rate-dependent effects are specific to particular initial conditions. Information processing for each starting state is affected by the balance between sweeping speed through critical regions, and the type of fluctuations added. For a heavy-tail noise, forward-reverse dynamic bifurcations are more efficient in processing the information contained in external signals, when compared to the system relying on escape dynamics, if it starts at an attractor not favoured by the asymmetry and, in conjunction, if the sweeping amplitude is large

    On Cryptographic Attacks Using Backdoors for SAT

    Full text link
    Propositional satisfiability (SAT) is at the nucleus of state-of-the-art approaches to a variety of computationally hard problems, one of which is cryptanalysis. Moreover, a number of practical applications of SAT can only be tackled efficiently by identifying and exploiting a subset of formula's variables called backdoor set (or simply backdoors). This paper proposes a new class of backdoor sets for SAT used in the context of cryptographic attacks, namely guess-and-determine attacks. The idea is to identify the best set of backdoor variables subject to a statistically estimated hardness of the guess-and-determine attack using a SAT solver. Experimental results on weakened variants of the renowned encryption algorithms exhibit advantage of the proposed approach compared to the state of the art in terms of the estimated hardness of the resulting guess-and-determine attacks

    Towards quantitative prediction of proteasomal digestion patterns of proteins

    Full text link
    We discuss the problem of proteasomal degradation of proteins. Though proteasomes are important for all aspects of the cellular metabolism, some details of the physical mechanism of the process remain unknown. We introduce a stochastic model of the proteasomal degradation of proteins, which accounts for the protein translocation and the topology of the positioning of cleavage centers of a proteasome from first principles. For this model we develop the mathematical description based on a master-equation and techniques for reconstruction of the cleavage specificity inherent to proteins and the proteasomal translocation rates, which are a property of the proteasome specie, from mass spectroscopy data on digestion patterns. With these properties determined, one can quantitatively predict digestion patterns for new experimental set-ups. Additionally we design an experimental set-up for a synthetic polypeptide with a periodic sequence of amino acids, which enables especially reliable determination of translocation rates.Comment: 14 pages, 4 figures, submitted to J. Stat. Mech. (Special issue for proceedings of 5th Intl. Conf. on Unsolved Problems on Noise and Fluctuations in Physics, Biology & High Technology, Lyon (France), June 2-6, 2008

    Integrated Information in the Spiking-Bursting Stochastic Model

    Full text link
    This study presents a comprehensive analytic description in terms of the empirical "whole minus sum" version of Integrated Information in comparison to the "decoder based" version for the "spiking-bursting" discrete-time, discrete-state stochastic model, which was recently introduced to describe a specific type of dynamics in a neuron-astrocyte network. The "whole minus sum" information may change sign, and an interpretation of this transition in terms of "net synergy" is available in the literature. This motivates our particular interest to the sign of the "whole minus sum" information in our analytical consideration. The behavior of the "whole minus sum" and "decoder based" information measures are found to bear a lot of similarity, showing their mutual asymptotic convergence as time-uncorrelated activity is increased, with the sign transition of the "whole minus sum" information associated to a rapid growth in the "decoder based" information. The study aims at creating a theoretical base for using the spiking-bursting model as a well understood reference point for applying Integrated Information concepts to systems exhibiting similar bursting behavior (in particular, to neuron-astrocyte networks). The model can also be of interest as a new discrete-state test bench for different formulations of Integrated Information

    Parenclitic and Synolytic Networks Revisited

    Get PDF
    © 2021 Nazarenko, Whitwell, Blyuss and Zaikin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). https://creativecommons.org/licenses/by/4.0/Parenclitic networks provide a powerful and relatively new way to coerce multidimensional data into a graph form, enabling the application of graph theory to evaluate features. Different algorithms have been published for constructing parenclitic networks, leading to the question—which algorithm should be chosen? Initially, it was suggested to calculate the weight of an edge between two nodes of the network as a deviation from a linear regression, calculated for a dependence of one of these features on the other. This method works well, but not when features do not have a linear relationship. To overcome this, it was suggested to calculate edge weights as the distance from the area of most probable values by using a kernel density estimation. In these two approaches only one class (typically controls or healthy population) is used to construct a model. To take account of a second class, we have introduced synolytic networks, using a boundary between two classes on the feature-feature plane to estimate the weight of the edge between these features. Common to all these approaches is that topological indices can be used to evaluate the structure represented by the graphs. To compare these network approaches alongside more traditional machine-learning algorithms, we performed a substantial analysis using both synthetic data with a priori known structure and publicly available datasets used for the benchmarking of ML-algorithms. Such a comparison has shown that the main advantage of parenclitic and synolytic networks is their resistance to over-fitting (occurring when the number of features is greater than the number of subjects) compared to other ML approaches. Secondly, the capability to visualise data in a structured form, even when this structure is not a priori available allows for visual inspection and the application of well-established graph theory to their interpretation/application, eliminating the “black-box” nature of other ML approaches.Peer reviewedFinal Published versio

    Multi-input distributed classifiers for synthetic genetic circuits

    Full text link
    For practical construction of complex synthetic genetic networks able to perform elaborate functions it is important to have a pool of relatively simple "bio-bricks" with different functionality which can be compounded together. To complement engineering of very different existing synthetic genetic devices such as switches, oscillators or logical gates, we propose and develop here a design of synthetic multiple input distributed classifier with learning ability. Proposed classifier will be able to separate multi-input data, which are inseparable for single input classifiers. Additionally, the data classes could potentially occupy the area of any shape in the space of inputs. We study two approaches to classification, including hard and soft classification and confirm the schemes of genetic networks by analytical and numerical results
    • …
    corecore