9 research outputs found

    Test techniques for determining laser ranging system performance

    Get PDF
    Procedures and results of an on going test program intended to evaluate laser ranging system performance levels in the field as well as in the laboratory are summarized. Tests show that laser ranging system design requires consideration of time biases and RMS jitters of individual system components. All simple Q switched lasers tested were found to be inadequate for 10 centimeter ranging systems. Timing discriminators operating over a typical 100:1 dynamic signal range may introduce as much as 7 to 9 centimeters of range bias. Time interval units commercially available today are capable of half centimeter performance and are adequate for all field systems currently deployed. Photomultipliers tested show typical tube time biases of one centimeter with single photoelectron transit time jitter of approximately 10 centimeters. Test results demonstrate that NASA's Mobile Laser Ranging System (MOBLAS) receiver configuration is limiting system performance below the 100 photoelectron level

    Precision Lunar Laser Ranging For Lunar and Gravitational Science

    Get PDF
    Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include

    Proposed SLR Optical Bench Required to Track Debris Using 1550 nm Lasers

    Get PDF
    A previous study has indicated that by using approx.1550 nm wavelengths a laser ranging system can track debris objects in an "eye safe" manner, while increasing the expected return rate by a factor of approx. 2/unit area of the telescope. In this presentation we develop the optical bench required to use approx.1550nm lasers, and integration with a 532nm system. We will use the optical bench configuration for NGSLR as the baseline, and indicate a possible injection point for the 1550 nm laser. The presentation will include what elements may need to be changed for transmitting the required power on the approx.1550nm wavelength, supporting the alignment of the laser to the telescope, and possible concerns for the telescope optics

    NASA's Satellite Laser Ranging Systems for the 21st Century

    No full text
    For over 40 years, NASAs global network of satellite laser ranging (SLR) stations has provided a significant percentage of the global orbital data used to define the International Terrestrial Reference Frame (ITRF). The current NASA legacy network is reaching its end-of-life and a new generation of systems must be ready to take its place. Scientific demands of sub-millimeter precision ranging and the ever-increasing number of tracking targets give aggressive performance requirements to this new generation of systems. Using lessons learned from the legacy systems and the successful development of a prototype station, a new network of SLR stations, called the Space Geodesy Satellite Laser Ranging (SGSLR) systems, is being developed. These will be the state-of-the-art SLR component of NASAs Space Geodesy Project (SGP). Each of SGSLRs nine subsystems has been designed to produce a robust, kilohertz laser ranging system with 24/7 operational capability and with minimal human intervention. SGSLRs data must support the aggressive goals of the Global Geodetic Observing System (GGOS), which are 1 millimeter (mm) position accuracy and 0.1 mm per year stability of the ITRF. This paper will describe the major requirements and accompanying design of the new SGSLR systems, how the systems will be tested, and the expected system performance

    Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS

    Get PDF
    We built a new experimental apparatus (the \u201cSatellite/lunar laser ranging Characterization Facility\u201d, SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications. The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellites Laser Ranging (SLR) to Galileo and other GNSS (Global he capability will allow us to optimize the design of GNSS laser retroreflector payloads to maximize ranging efficiency, to improve signal-to-noise conditions in daylight and to provide pre-launch validation of retroreflector performance under laboratory-simulated space conditions. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF), to provide better definition of the geocenter (origin) and the scale (length unit). Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the SLR retroreflector payload under thermal conditions produced with a close-match solar simulator. The apparatus includes infrared cameras for non-invasive thermometry, thermal control and real-time movement of the payload to experimentally simulate satellite orientation on orbit with respect to both solar illumination and laser interrogation beams. These unique capabilities provide experimental validation of the space segment for SLR and Lunar Laser Ranging (LLR). We used the SCF facility and the SCF-Test to perform a comprehensive, non-invasive space characterization of older generation, back-coated retroreflectors of the GIOVE-A and -B (Galileo In-Orbit Validation Elements) and the GPS-35 and -36 designs. First, using a full GPS flight model at laser wavelengths of 532 and 632 nm, we found its \u201ceffective optical cross section\u201d in air, under isothermal conditions, to be six times lower than the Retroreflector Standard for GNSS satellites (100 106 m2 at 20,000 km altitude for GPS and 180 106 m2 for Galileo at 23,200 km altitude), issued by the International Laser Ranging Service (ILRS). Under the simulated thermal and space conditions of the SCF, we also showed that in some space configurations the \u201ceffective optical cross section\u201d is further reduced, by the thermal degradation of the FFDP. Using the same SCF-Test configuration on an individual GIOVE prototype cube, we measured severe thermal degradation in optical performance, which appears to be caused by the retroreflector metal coating and the nonoptimized thermal conductance of the mounting. Uncoated retroreflectors with proper mounting can minimize thermal degradation and significantly increase the optical performance, and as such, are emerging as the recommended design for modern GNSS satellites. The COMPASS-M1, GLONASS-115 GNSS satellites use uncoated cubes. They provide better efficiency than those on GPS and GIOVE, including better daylight ranging performance. However, these retroreflectors were not characterized in the laboratory under space conditions prior to launch, so we have no basis to evaluate how well they were optimized for future GNSS satellites. SCF-Testing, under a non-disclosure agreement between INFN-LNF and the European Space Agency (ESA), of prototype uncoated cubes for the first four Galileo satellites to be launched (named \u201cIOV\u201d, In-Orbit Validation satellites) is a major step forward. An SCF-Test performed on a LAGEOS (LAser GEOdynamics Satellite) engineering model retroreflector array provided by NASA, showed the good space performance on what is now a reference ILRS payload standard. The IOV and LAGEOS measurements demonstrated the effectiveness of the SCF-Test as an LRA diagnostic, optimization and validatio..
    corecore