430 research outputs found

    A survey on mouth modeling and analysis for Sign Language recognition

    Get PDF
    © 2015 IEEE.Around 70 million Deaf worldwide use Sign Languages (SLs) as their native languages. At the same time, they have limited reading/writing skills in the spoken language. This puts them at a severe disadvantage in many contexts, including education, work, usage of computers and the Internet. Automatic Sign Language Recognition (ASLR) can support the Deaf in many ways, e.g. by enabling the development of systems for Human-Computer Interaction in SL and translation between sign and spoken language. Research in ASLR usually revolves around automatic understanding of manual signs. Recently, ASLR research community has started to appreciate the importance of non-manuals, since they are related to the lexical meaning of a sign, the syntax and the prosody. Nonmanuals include body and head pose, movement of the eyebrows and the eyes, as well as blinks and squints. Arguably, the mouth is one of the most involved parts of the face in non-manuals. Mouth actions related to ASLR can be either mouthings, i.e. visual syllables with the mouth while signing, or non-verbal mouth gestures. Both are very important in ASLR. In this paper, we present the first survey on mouth non-manuals in ASLR. We start by showing why mouth motion is important in SL and the relevant techniques that exist within ASLR. Since limited research has been conducted regarding automatic analysis of mouth motion in the context of ALSR, we proceed by surveying relevant techniques from the areas of automatic mouth expression and visual speech recognition which can be applied to the task. Finally, we conclude by presenting the challenges and potentials of automatic analysis of mouth motion in the context of ASLR

    Robust correlated and individual component analysis

    Get PDF
    © 1979-2012 IEEE.Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) thetemporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methodson these application domains, outperforming other state-of-the-art methods in the field

    Fusion and community detection in multi-layer graphs

    Get PDF
    Relational data arising in many domains can be represented by networks (or graphs) with nodes capturing entities and edges representing relationships between these entities. Community detection in networks has become one of the most important problems having a broad range of applications. Until recently, the vast majority of papers have focused on discovering community structures in a single network. However, with the emergence of multi-view network data in many real-world applications and consequently with the advent of multilayer graph representation, community detection in multi-layer graphs has become a new challenge. Multi-layer graphs provide complementary views of connectivity patterns of the same set of vertices. Fusion of the network layers is expected to achieve better clustering performance. In this paper, we propose two novel methods, coined as WSSNMTF (Weighted Simultaneous Symmetric Non-Negative Matrix Tri-Factorization) and NG-WSSNMTF (Natural Gradient WSSNMTF), for fusion and clustering of multi-layer graphs. Both methods are robust with respect to missing edges and noise. We compare the performance of the proposed methods with two baseline methods, as well as with three state-of-the-art methods on synthetic and three real-world datasets. The experimental results indicate superior performance of the proposed methods

    Side information in robust principal component analysis: algorithms and applications

    Get PDF
    Robust Principal Component Analysis (RPCA) aims at recovering a low-rank subspace from grossly corrupted high-dimensional (often visual) data and is a cornerstone in many machine learning and computer vision applications. Even though RPCA has been shown to be very successful in solving many rank minimisation problems, there are still cases where degenerate or suboptimal solutions are obtained. This is likely to be remedied by taking into account of domain-dependent prior knowledge. In this paper, we propose two models for the RPCA problem with the aid of side information on the low-rank structure of the data. The versatility of the proposed methods is demonstrated by applying them to four applications, namely background subtraction, facial image denoising, face and facial expression recognition. Experimental results on synthetic and five real world datasets indicate the robustness and effectiveness of the proposed methods on these application domains, largely outperforming six previous approaches

    Robust Kronecker-decomposable component analysis for low-rank modeling

    Get PDF
    Dictionary learning and component analysis are part of one of the most well-studied and active research fields, at the intersection of signal and image processing, computer vision, and statistical machine learning. In dictionary learning, the current methods of choice are arguably K-SVD and its variants, which learn a dictionary (i.e., a decomposition) for sparse coding via Singular Value Decomposition. In robust component analysis, leading methods derive from Principal Component Pursuit (PCP), which recovers a low-rank matrix from sparse corruptions of unknown magnitude and support. However, K-SVD is sensitive to the presence of noise and outliers in the training set. Additionally, PCP does not provide a dictionary that respects the structure of the data (e.g., images), and requires expensive SVD computations when solved by convex relaxation. In this paper, we introduce a new robust decomposition of images by combining ideas from sparse dictionary learning and PCP. We propose a novel Kronecker-decomposable component analysis which is robust to gross corruption, can be used for low-rank modeling, and leverages separability to solve significantly smaller problems. We design an efficient learning algorithm by drawing links with a restricted form of tensor factorization. The effectiveness of the proposed approach is demonstrated on real-world applications, namely background subtraction and image denoising, by performing a thorough comparison with the current state of the art

    Automatic construction of robust spherical harmonic subspaces

    Get PDF
    In this paper we propose a method to automatically recover a class specific low dimensional spherical harmonic basis from a set of in-the-wild facial images. We combine existing techniques for uncalibrated photometric stereo and low rank matrix decompositions in order to robustly recover a combined model of shape and identity. We build this basis without aid from a 3D model and show how it can be combined with recent efficient sparse facial feature localisation techniques to recover dense 3D facial shape. Unlike previous works in the area, our method is very efficient and is an order of magnitude faster to train, taking only a few minutes to build a model with over 2000 images. Furthermore, it can be used for real-time recovery of facial shape

    GANFIT: Generative adversarial network fitting for high fidelity 3D face reconstruction

    Get PDF
    In the past few years, a lot of work has been done to- wards reconstructing the 3D facial structure from single images by capitalizing on the power of Deep Convolutional Neural Networks (DCNNs). In the most recent works, differentiable renderers were employed in order to learn the relationship between the facial identity features and the parameters of a 3D morphable model for shape and texture. The texture features either correspond to components of a linear texture space or are learned by auto-encoders directly from in-the-wild images. In all cases, the quality of the facial texture reconstruction of the state-of-the-art methods is still not capable of modeling textures in high fidelity. In this paper, we take a radically different approach and harness the power of Generative Adversarial Networks (GANs) and DCNNs in order to reconstruct the facial texture and shape from single images. That is, we utilize GANs to train a very powerful generator of facial texture in UV space. Then, we revisit the original 3D Morphable Models (3DMMs) fitting approaches making use of non-linear optimization to find the optimal latent parameters that best reconstruct the test image but under a new perspective. We optimize the parameters with the supervision of pretrained deep identity features through our end-to-end differentiable framework. We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, to the best of our knowledge, facial texture reconstruction with high-frequency details

    4DFAB: a large scale 4D facial expression database for biometric applications

    Get PDF
    The progress we are currently witnessing in many computer vision applications, including automatic face analysis, would not be made possible without tremendous efforts in collecting and annotating large scale visual databases. To this end, we propose 4DFAB, a new large scale database of dynamic high-resolution 3D faces (over 1,800,000 3D meshes). 4DFAB contains recordings of 180 subjects captured in four different sessions spanning over a five-year period. It contains 4D videos of subjects displaying both spontaneous and posed facial behaviours. The database can be used for both face and facial expression recognition, as well as behavioural biometrics. It can also be used to learn very powerful blendshapes for parametrising facial behaviour. In this paper, we conduct several experiments and demonstrate the usefulness of the database for various applications. The database will be made publicly available for research purposes

    Recovering joint and individual components in facial data

    Get PDF
    A set of images depicting faces with different expressions or in various ages consists of components that are shared across all images (i.e., joint components) imparting to the depicted object the properties of human faces as well as individual components that are related to different expressions or age groups. Discovering the common (joint) and individual components in facial images is crucial for applications such as facial expression transfer and age progression. The problem is rather challenging when dealing with images captured in unconstrained conditions in the presence of sparse non-Gaussian errors of large magnitude (i.e., sparse gross errors or outliers) and contain missing data. In this paper, we investigate the use of a method recently introduced in statistics, the so-called Joint and Individual Variance Explained (JIVE) method, for the robust recovery of joint and individual components in visual facial data consisting of an arbitrary number of views. Since the JIVE is not robust to sparse gross errors, we propose alternatives, which are (1) robust to sparse gross, non-Gaussian noise, (2) able to automatically find the individual components rank, and (3) can handle missing data. We demonstrate the effectiveness of the proposed methods to several computer vision applications, namely facial expression synthesis and 2D and 3D face age progression ‘in-the-wild’
    • …
    corecore