4 research outputs found

    Network asynchrony underlying increased broadband gamma power

    Get PDF
    Synchronous activity of cortical inhibitory interneurons expressing parvalbumin (PV) underlies expression of cortical γ rhythms. Paradoxically, deficient PV inhibition is associated with increased broadband γ power in the local field potential. Increased baseline broadband γ is also a prominent characteristic in schizophrenia and a hallmark of network alterations induced by NMDAR antagonists, such as ketamine. Whether enhanced broadband γ is a true rhythm, and if so, whether rhythmic PV inhibition is involved or not, is debated. Asynchronous and increased firing activities are thought to contribute to broadband power increases spanning the γ band. Using male and female mice lacking NMDAR activity specifically in PV neurons to model deficient PV inhibition, we here show that neuronal activity with decreased synchronicity is associated with increased prefrontal broadband γ power. Specifically, reduced spike time precision and spectral leakage of spiking activity because of higher firing rates (spike “contamination”) affect the broadband γ band. Desynchronization was evident at multiple time scales, with reduced spike entrainment to the local field potential, reduced cross-frequency coupling, and frag- mentation of brain states. Local application of S(1)-ketamine in (control) mice with intact NMDAR activity in PV neurons triggered network desynchronization and enhanced broadband γ power. However, our investigations suggest that disparate mechanisms underlie increased broadband γ power caused by genetic alteration of PV interneurons and ketamine-induced power increases in broadband c. Our study confirms that enhanced broadband γ power can arise from asynchronous activ- ities and demonstrates that long-term deficiency of PV inhibition can be a contributor.ERCSTINT Program Joint Brazilian-Swedish Research Collaboration GrantCAPES-STINT Program GrantKnut and Alice Wallenberg FoundationSwedish Research CouncilKarolinska InstitutetAccepte

    Adult trkB signaling in parvalbumin interneurons is essential to prefrontal network dynamics

    Get PDF
    Inhibitory interneurons expressing parvalbumin (PV) are central to cortical network dynamics, generation of c oscillations, and cognition. Dysfunction of PV interneurons disrupts cortical information processing and cognitive behavior. Brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (trkB) signaling regulates the maturation of cortical PV interneurons but is also implicated in their adult multidimensional functions. Using a novel viral strategy for cell-type-specific and spatially restricted expression of a dominant-negative trkB (trkB.DN), we show that BDNF/trkB signaling is essential to the integrity and maintenance of prefrontal PV interneurons in adult male and female mice. Reduced BDNF/trkB signaling in PV interneurons in the medial prefrontal cortex (mPFC) resulted in deficient PV inhibition and increased baseline local field potential (LFP) activity in a broad frequency band. The altered network activity was particularly pronounced during increased activation of the prefrontal network and was associated with changed dynamics of local excitatory neurons, as well as decreased modulation of the LFP, abnormalities that appeared to generalize across stimuli and brain states. In addition, our findings link reduced BDNF/trkB signaling in prefrontal PV interneurons to increased aggression. Together our investigations demonstrate that BDNF/trkB signaling in PV interneurons in the adult mPFC is essential to local network dynamics and cognitive behavior. Our data provide direct support for the suggested association between decreased trkB signaling, deficient PV inhibition, and altered prefrontal circuitry.ERCSwedish Research CouncilCAPES-STINT Program GrantKarolinska InstitutetKnut and Alice Wallenberg FoundationSTINT Program Joint Brazilian-Swedish Research Collaboration GrantPublishe

    Effects of basolateral amygdala kindling on oscillatory patterns during sleep

    No full text
    Na epilepsia do lobo temporal (ELT), alterações morfofuncionais em estruturas límbicas são classicamente acompanhadas de déficits cognitivos. Estudos anteriores revelaram que disfunções eletrofisiológicas em circuitos hipocampo-corticais são observadas durante o sono NREM (non rapid eye movement), onde eventos patológicos como fast ripples e IEDs (interictal epileptiform discharges) substituem gradativamente eventos fisiológicos, como as sharp-wave ripples (SWR). Tal substituição pode estar por trás dos prejuízos cognitivos observados tanto nos modelos animais como em pacientes, já que as SWRs são fundamentais para a transferência de informação do hipocampo ao córtex durante a consolidação de memórias. De maneira complementar, o sono REM também parece exercer um papel fundamental em processos mnemônicos, facilitando eventos de plasticidade sináptica e coordenando regiões encefálicas distantes por meio de acoplamento entre diferentes frequências oscilatórias, tais como teta e gama. Entretanto, as alterações no sono REM durante os processos de epileptogênese ainda foram pouco exploradas. Neste trabalho testamos a hipótese de que disfunções na coordenação rítmica durante o sono REM estariam associadas a prejuízos de memória que se manifestam na epileptogênese. Para isso, submetemos ratos Wistar adultos machos a protocolo de abrasamento rápido da amígdala basolateral, possibilitando a avaliação de alterações eletrofisiológicas gradativas durante o processo de epileptogênese. Foram realizados implantes crônicos de eletrodos para registro do potencial local de campo (LFP, Local Field Potential) nas regiões de CA1 e do córtex pré-frontal medial (mPFC, medial prefrontal cortex), além de eletrodos bipolares para estímulo na amígdala basolateral. Os protocolos de abrasamento foram realizados durante um período de 3 dias, aplicando-se diariamente 10 trens de estímulos a 50 Hz com duração de 10 segundos. Para avaliarmos os prejuízos cognitivos, os animais foram submetidos a testes de reconhecimento de objetos antes do início a após o término dos protocolos de abrasamento. O sonosubsequente às sessões de reconhecimento de objetos e aos protocolos de estimulações foram registrados diariamente. Além do prejuízo no reconhecimento de objetos e alterações eletrofisiológicas durante o sono NREM, como a substituição gradativa de ripples por IEDs, os animais submetidos ao abrasamento elétrico apresentaram um aumento na comodulação fase-amplitude entre oscilações teta e gama durante o sono REM após as estimulações, exibindo também uma correlação negativa entre a comodulação e a duração das pós-descargas induzidas pelos estímulos elétricos do abrasamento durante o sono subsequente a aplicação dos protocolos. Nossos achados ampliam a compreensão vigente sobre como alterações de oscilações cerebrais durante o sono, especialmente da fase REM, poderiam estar subjacentes a prejuízos de memória que ocorrem na ELT.Morphofunctional changes in limbic structures are classically followed by cognitive deficits in Temporal Lobe Epilepsy (TLE) patients. Previous studies revealed that electrophysiological dysfunctions in hippocampal-cortical circuits are observed during NREM (non-rapid eye movement) sleep, where pathological events such as fast ripples and IEDs (interictal epileptiform discharges) gradually replace physiological events, such as Sharpwave Ripples (SWR). This replacement seems to describe the cognitive impairments observed in animal models and TLE patients since SWRs are fundamental for information transfer from the hippocampus to cortex during memory consolidation. Complementary, REM sleep also plays a significant role in mnemonic processes, facilitating synaptic plasticity events and coordinating distant brain regions by coupling different frequencies, such as theta and gamma. However, alterations in REM sleep during the epileptogenesis processes are poorly investigated. In this study, we tested the hypothesis that dysfunctions on rhythmic coordination during REM sleep would be associated with memory deficits showed during epileptogenesis. For this, we submitted adult Wistar rats to a rapid kindling protocol on basolateral amygdala (BLA), allowing the evaluation of progressive electrophysiological changes during the epileptogenic process. Chronic electrodes were implanted for the local field potentials (LFP) recording in the CA1 and medial prefrontal cortex (mPFC), as well as bipolar electrodes for BLA stimulation. The kindling protocols were performed during three days, applying ten trains of 50 Hz stimulations with ten seconds duration. Object recognition tasks were performed before and after the kindling protocol to evaluate cognitive impairment. Sleep recordings were performed daily after the object recognition or kindling application. Along with object recognition impairment and electrophysiological changes during NREM sleep, such as progressive SWR substitution by IEDs, kindled rats presented an increase in phase-amplitude comodulation between theta and gamma oscillations during REM sleep after stimulation sessions, which also correlates negatively with after-discharges (AD) duration induced by the kindling stimulation. Our findingsexpand the comprehension about how changes in brain oscillations during REM sleep underlies observed memory deficits in TLE
    corecore