92 research outputs found

    Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma

    Get PDF
    Myeloid suppressor cells (MSCs) producing high levels of arginase I block T cell function by depleting l-arginine in cancer, chronic infections, and trauma patients. In cancer, MSCs infiltrating tumors and in circulation are an important mechanism for tumor evasion and impair the therapeutic potential of cancer immunotherapies. However, the mechanisms that induce arginase I in MSCs in cancer are unknown. Using the 3LL mouse lung carcinoma, we aimed to characterize these mechanisms. Arginase I expression was independent of T cell–produced cytokines. Instead, tumor-derived soluble factors resistant to proteases induced and maintained arginase I expression in MSCs. 3LL tumor cells constitutively express cyclooxygenase (COX)-1 and COX-2 and produce high levels of PGE2. Genetic and pharmacological inhibition of COX-2, but not COX-1, blocked arginase I induction in vitro and in vivo. Signaling through the PGE2 receptor E-prostanoid 4 expressed in MSCs induced arginase I. Furthermore, blocking arginase I expression using COX-2 inhibitors elicited a lymphocyte-mediated antitumor response. These results demonstrate a new pathway of prostaglandin-induced immune dysfunction and provide a novel mechanism that can help explain the cancer prevention effects of COX-2 inhibitors. Furthermore, an addition of arginase I represents a clinical approach to enhance the therapeutic potential of cancer immunotherapies

    Sex Hormones, Hormonal Interventions, and Gastric Cancer Risk: A Meta-analysis

    Get PDF
    Estrogens may influence gastric cancer risk but published studies are inconclusive. We therefore performed a meta-analysis addressing the associations of gastric cancer in women with menstrual and reproductive factors, and with use of estrogen- and antiestrogen-related therapies. Searches of PubMed up to June, 2011 and review of citations yielded a total of 28 independent studies including at least one exposure of interest. Random effects pooled estimates of relative risk (RR) and corresponding 95% confidence intervals (CI) were calculated for eight exposures reported in at least five studies, including: age at menarche, age at menopause, years of fertility, parity, age at first birth, oral contraceptive use, hormone replacement therapy (HRT), and tamoxifen treatment. Longer years of fertility (RR= 0.74; 95% CI= 0.63 to 0.86) and HRT (RR= 0.77, 95% CI= 0.64 to 0.92) were each associated with decreased gastric cancer risk. Conversely, tamoxifen treatment was associated with increased risk (RR= 1.82, 95% CI= 1.39 to 2.38). The other five exposures were not significantly associated. Our analysis supports the hypothesis that longer exposure to estrogen effects of either ovarian or exogenous origin may decrease risk of gastric cancer. Additional studies are warranted to extend this finding and to identify the underlying mechanisms

    Ancestry as a potential modifier of gene expression in breast tumors from Colombian women

    Get PDF
    Background Hispanic/Latino populations are a genetically admixed and heterogeneous group, with variable fractions of European, Indigenous American and African ancestries. The molecular profile of breast cancer has been widely described in non-Hispanic Whites but equivalent knowledge is lacking in Hispanic/Latinas. We have previously reported that the most prevalent breast cancer intrinsic subtype in Colombian women was Luminal B as defined by St. Gallen 2013 criteria. In this study we explored ancestry-associated differences in molecular profiles of Luminal B tumors among these highly admixed women. Methods We performed whole-transcriptome RNA-seq analysis in 42 Luminal tumors (21 Luminal A and 21 Luminal B) from Colombian women. Genetic ancestry was estimated from a panel of 80 ancestry-informative markers (AIM). We categorized patients according to Luminal subtype and to the proportion of European and Indigenous American ancestry and performed differential expression analysis comparing Luminal B against Luminal A tumors according to the assigned ancestry groups. Results We found 5 genes potentially modulated by genetic ancestry: ERBB2 (log2FC = 2.367, padj<0.01), GRB7 (log2FC = 2.327, padj<0.01), GSDMB (log2FC = 1.723, padj<0.01, MIEN1 (log2FC = 2.195, padj<0.01 and ONECUT2 (log2FC = 2.204, padj<0.01). In the replication set we found a statistical significant association between ERBB2 expression with Indigenous American ancestry (p = 0.02, B = 3.11). This association was not biased by the distribution of HER2+ tumors among the groups analyzed. Conclusions Our results suggest that genetic ancestry in Hispanic/Latina women might modify ERBB2 gene expression in Luminal tumors. Further analyses are needed to confirm these findings and explore their prognostic value.PLoS Journal

    Association of the T allele of an intronic single nucleotide polymorphism in the colony stimulating factor 1 receptor with Crohn's disease: a case-control study

    Get PDF
    BACKGROUND: Polymorphisms in several genes (NOD2, MDR1, SLC22A4) have been associated with susceptibility to Crohn's disease. Identification of the remaining Crohn's susceptibility genes is essential for the development of disease-specific targets for immunotherapy. Using gene expression analysis, we identified a differentially expressed gene on 5q33, the colony stimulating factor 1 receptor (CSF1R) gene, and hypothesized that it is a Crohn's susceptibility gene. The CSF1R gene is involved in monocyte to macrophage differentiation and in innate immunity. METHODS: Patients provided informed consent prior to entry into the study as approved by the Institutional Review Board at LSU Health Sciences Center. We performed forward and reverse sequencing of genomic DNA from 111 unrelated patients with Crohn's disease and 108 controls. We also stained paraffin-embedded, ileal and colonic tissue sections from patients with Crohn's disease and controls with a polyclonal antibody raised against the human CSF1R protein. RESULTS: A single nucleotide polymorphism (A2033T) near a Runx1 binding site in the eleventh intron of the colony stimulating factor 1 receptor was identified. The T allele of this single nucleotide polymorphism occurred in 27% of patients with Crohn's disease but in only 13% of controls (X(2 )= 6.74, p < 0.01, odds ratio (O.R.) = 2.49, 1.23 < O.R. < 5.01). Using immunohistochemistry, positive staining with a polyclonal antibody to CSF1R was observed in the superficial epithelium of ileal and colonic tissue sections. CONCLUSIONS: We conclude that the colony stimulating factor receptor 1 gene may be a susceptibility gene for Crohn's disease

    Association between Ancestry-Specific 6q25 Variants and Breast Cancer Subtypes in Peruvian Women

    Get PDF
    Background: Breast cancer incidence in the United States is lower in Hispanic/Latina (H/L) compared with African American/ Black or Non-Hispanic White women. An Indigenous American breast cancer-protective germline variant (rs140068132) has been reported near the estrogen receptor 1 gene. This study tests the association of rs140068132 and other polymorphisms in the 6q25 region with subtype-specific breast cancer risk in H/Ls of high Indigenous American ancestry. Methods: Genotypes were obtained for 5,094 Peruvian women with (1,755) and without (3,337) breast cancer. Associations between genotype and overall and subtype-specific risk for the protective variant were tested using logistic regression models and conditional analyses, including other risk-associated polymorphisms in the region. Results: We replicated the reported association between rs140068132 and breast cancer risk overall [odds ratio (OR), 0.53; 95% confidence interval (CI), 0.47-0.59], as well as the lower odds of developing hormone receptor negative (HR-) versus HR+ disease (OR, 0.77; 95% CI, 0.61-0.97). Models, including HER2, showed further heterogeneity with reduced odds for HR+HER2+ (OR, 0.68; 95% CI, 0.51-0.92), HR-HER2+ (OR, 0.63; 95% CI, 0.44-0.90) and HR-HER2- (OR, 0.77; 95% CI, 0.56-1.05) compared with HR+HER2-. Inclusion of other risk-associated variants did not change these observations. Conclusions: The rs140068132 polymorphism is associated with decreased risk of breast cancer in Peruvians and is more protective against HR- and HER2+ diseases independently of other breast cancer-associated variants in the 6q25 region. Impact: These results could inform functional analyses to understand the mechanism by which rs140068132-G reduces risk of breast cancer development in a subtype-specific manner. They also illustrate the importance of including diverse individuals in genetic studies.National Institutes of HealthRevisiĂłn por pare

    Notch Signaling Regulates Mitochondrial Metabolism and NF-ÎșB Activity in Triple-Negative Breast Cancer Cells via IKKα-Dependent Non-canonical Pathways

    Get PDF
    Triple negative breast cancer (TNBC) patients have high risk of recurrence and metastasis, and current treatment options remain limited. Cancer stem-like cells (CSCs) have been linked to cancer initiation, progression and chemotherapy resistance. Notch signaling is a key pathway regulating TNBC CSC survival. Treatment of TNBC with PI3K or mTORC1/2 inhibitors results in drug-resistant, Notch-dependent CSC. However, downstream mechanisms and potentially druggable Notch effectors in TNBC CSCs are largely unknown. We studied the role of the AKT pathway and mitochondrial metabolism downstream of Notch signaling in TNBC CSC from cell lines representative of different TNBC molecular subtypes as well as a novel patient-derived model. We demonstrate that exposure of TNBC cells to recombinant Notch ligand Jagged1 leads to rapid AKT phosphorylation in a Notch1-dependent but RBP-JÎș independent fashion. This requires mTOR and IKKα. Jagged1 also stimulates mitochondrial respiration and fermentation in an AKT- and IKK-dependent fashion. Notch1 co-localizes with mitochondria in TNBC cells. Pharmacological inhibition of Notch cleavage by gamma secretase inhibitor PF-03084014 in combination with AKT inhibitor MK-2206 or IKK-targeted NF-ÎșB inhibitor Bay11-7082 blocks secondary mammosphere formation from sorted CD90hi or CD44+CD24low (CSCs) cells. A TNBC patient-derived model gave comparable results. Besides mitochondrial oxidative metabolism, Jagged1 also triggers nuclear, NF-ÎșB-dependent transcription of anti-apoptotic gene cIAP-2. This requires recruitment of Notch1, IKKα and NF-ÎșB to the cIAP-2 promoter. Our observations support a model where Jagged1 triggers IKKα-dependent, mitochondrial and nuclear Notch1 signals that stimulate AKT phosphorylation, oxidative metabolism and transcription of survival genes in PTEN wild-type TNBC cells. These data suggest that combination treatments targeting the intersection of the Notch, AKT and NF-ÎșB pathways have potential therapeutic applications against CSCs in TNBC cases with Notch1 and wild-type PTEN expression

    Cancer health disparities in racial/ethnic minorities in the United States

    Get PDF
    There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA—African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.Fil: Zavala, Valentina A.. University of California; Estados UnidosFil: Bracci, Paige M.. University of California; Estados UnidosFil: Carethers, John M.. University of Michigan; Estados UnidosFil: Carvajal Carmona, Luis. University of California at Davis; Estados UnidosFil: Coggins, Nicole B.. University of California at Davis; Estados UnidosFil: Cruz Correa, Marcia R.. Universidad de Puerto Rico; Puerto RicoFil: Davis, Melissa. No especifĂ­ca;Fil: de Smith, Adam J.. University of California; Estados UnidosFil: Dutil, Julie. Ponce Research Institute; Puerto RicoFil: Figueiredo, Jane C.. Cedars Sinai Medical Center; Estados UnidosFil: Fox, Rena. University of California; Estados UnidosFil: Graves, Kristi D.. University Of Georgetown; Estados UnidosFil: Gomez, Scarlett Lin. University of California; Estados UnidosFil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones BioquĂ­micas de Buenos Aires. FundaciĂłn Instituto Leloir. Instituto de Investigaciones BioquĂ­micas de Buenos Aires; ArgentinaFil: Neuhausen, Susan L.. No especifĂ­ca;Fil: Newman, Lisa. No especifĂ­ca;Fil: Nguyen, Tung. University of California; Estados UnidosFil: Palmer, Julie R.. National Institutes of Health; Estados UnidosFil: Palmer, Nynikka R.. University of California; Estados UnidosFil: PĂ©rez Stable, Eliseo J.. National Institutes of Health; Estados UnidosFil: Piawah, Sorbarikor. University of California; Estados UnidosFil: Rodriquez, Erik J.. National Institutes of Health; Estados UnidosFil: Sanabria Salas, MarĂ­a Carolina. Instituto Nacional de CancerologĂ­a; ColombiaFil: Schmit, Stephanie L.. University of Southern California; Estados UnidosFil: Serrano Gomez, Silvia J.. Instituto Nacional de CancerologĂ­a; ColombiaFil: Stern, Mariana Carla. University of Southern California; Estados UnidosFil: Weitzel, Jeffrey. No especifĂ­ca;Fil: Yang, Jun J.. St. Jude Children’s Research Hospital; Estados UnidosFil: Zabaleta, Jovanny. No especifĂ­ca;Fil: Ziv, Elad. University of California; Estados UnidosFil: Fejerman, Laura. University of California; Estados Unido
    • 

    corecore