5,642 research outputs found

    Brief Analysis on China Rural Tourism

    Get PDF
    This paper analyzes the strengths and existing problems in the development of China rural tourism, putting forward some main countermeasures in many areas: strengthening layout and industrial management; promoting the cultural taste of rural tourism products and how to improve the construction and management level of this industry. Additionally, it is discussed in which way that exerts the government’s roles to push up corporately the development of rural tourism industry and living conditions of local people. Key words: China, Rural tourism, Strengths, problems, countermeasure Résumé: L’article présent analyse les points forts et les problèmes existant dans le développement du tourisme rural de Chine et propose des contre-mesures dans bien des domaines : le renforcement de l’arrangment et du management industriel, la promotion des produits culturels du tourisme rural et l’amélioration du niveau de construction et de management de cette industrie. En plus, l’auteur discute de quelle manière le gouvernement joue son rôle pour favoriser le développement du tourisme rural et améliorer les conditions de vie de la population locale. Mots-Clés: Chine, tourisme rural, points forts, problèmes, contre-mesur

    Neutrino mu-tau reflection symmetry and its breaking in the minimal seesaw

    Full text link
    In this paper, we attempt to implement the neutrino μ\mu-τ\tau reflection symmetry (which predicts θ23=π/4\theta^{}_{23} = \pi/4 and δ=±π/2\delta = \pm \pi/2 as well as trivial Majorana phases) in the minimal seesaw (which enables us to fix the neutrino masses). For some direct (the preliminary experimental hints towards θ23≠π/4\theta^{}_{23} \neq \pi/4 and δ≠−π/2\delta \neq - \pi/2) and indirect (inclusion of the renormalization group equation effect and implementation of the leptogenesis mechanism) reasons, we particularly study the breakings of this symmetry and their phenomenological consequences.Comment: 20 pages, 7 figures, accepted for publication in JHE

    Unifying ultrafast demagnetization and intrinsic Gilbert damping in Co/Ni bilayers with electronic relaxation near the Fermi surface

    Full text link
    The ability to controllably manipulate the laser-induced ultrafast magnetic dynamics is a prerequisite for future high speed spintronic devices. The optimization of devices requires the controllability of the ultrafast demagnetization time, , and intrinsic Gilbert damping, . In previous attempts to establish the relationship between and , the rare-earth doping of a permalloy film with two different demagnetization mechanism is not a suitable candidate. Here, we choose Co/Ni bilayers to investigate the relations between and by means of time-resolved magneto-optical Kerr effect (TRMOKE) via adjusting the thickness of the Ni layers, and obtain an approximately proportional relation between these two parameters. The remarkable agreement between TRMOKE experiment and the prediction of breathing Fermi-surface model confirms that a large Elliott-Yafet spin-mixing parameter is relevant to the strong spin-orbital coupling at the Co/Ni interface. More importantly, a proportional relation between and in such metallic films or heterostructures with electronic relaxation near Fermi surface suggests the local spin-flip scattering domains the mechanism of ultrafast demagnetization, otherwise the spin-current mechanism domains. It is an effective method to distinguish the dominant contributions to ultrafast magnetic quenching in metallic heterostructures by investigating both the ultrafast demagnetization time and Gilbert damping simultaneously. Our work can open a novel avenue to manipulate the magnitude and efficiency of Terahertz emission in metallic heterostructures such as the perpendicular magnetic anisotropic Ta/Pt/Co/Ni/Pt/Ta multilayers, and then it has an immediate implication of the design of high frequency spintronic devices

    Electrical Control of Magnetization in Charge-ordered Multiferroic LuFe2O4

    Full text link
    LuFe2O4 exhibits multiferroicity due to charge order on a frustrated triangular lattice. We find that the magnetization of LuFe2O4 in the multiferroic state can be electrically controlled by applying voltage pulses. Depending on with or without magnetic fields, the magnetization can be electrically switched up or down. We have excluded thermal heating effect and attributed this electrical control of magnetization to an intrinsic magnetoelectric coupling in response to the electrical breakdown of charge ordering. Our findings open up a new route toward electrical control of magnetization.Comment: 14 pages, 5 figure
    • …
    corecore