102 research outputs found

    Conditional forecasting of bus travel time and passenger occupancy with Bayesian Markov regime-switching vector autoregression

    Full text link
    Accurately forecasting bus travel time and passenger occupancy with uncertainty is essential for both travelers and transit agencies/operators. However, existing approaches to forecasting bus travel time and passenger occupancy mainly rely on deterministic models, providing only point estimates. In this paper, we develop a Bayesian Markov regime-switching vector autoregressive model to jointly forecast both bus travel time and passenger occupancy with uncertainty. The proposed approach naturally captures the intricate interactions among adjacent buses and adapts to the multimodality and skewness of real-world bus travel time and passenger occupancy observations. We develop an efficient Markov chain Monte Carlo (MCMC) sampling algorithm to approximate the resultant joint posterior distribution of the parameter vector. With this framework, the estimation of downstream bus travel time and passenger occupancy is transformed into a multivariate time series forecasting problem conditional on partially observed outcomes. Experimental validation using real-world data demonstrates the superiority of our proposed model in terms of both predictive means and uncertainty quantification compared to the Bayesian Gaussian mixture model

    Miniature probe for dual- modality photoacoustic microscopy and white- light microscopy for image guidance: A prototype toward an endoscope

    Full text link
    In this study, a novel photoacoustic microscopy (PAM) probe integrating white- light microscopy (WLM) modality that provides guidance for PAM imaging and complementary information is implemented. One single core of an imaging fiber bundle is employed to deliver a pulsed laser for photoacoustic excitation for PAM mode, which provides high resolution with deep penetration. Meanwhile, for WLM mode, the imaging fiber bundle is used to transmit two- dimensional superficial images. Lateral resolution of 7.2 μm for PAM is achieved. Since miniature components are used, the probe diameter is only 1.7- mm. Imaging of phantom and animals in vivo is conducted to show the imaging capability of the probe. The probe has several advantages by introducing the WLM mode, such as being able to conveniently identify regions of interest and align the focus for PAM mode. The prototype of an endoscope shows potential to facilitate clinical photoacoustic endoscopic applications.Integrated photoacoustic microscopy (PAM) and white- light microscopy into a miniature probe can be useful for medical imaging applications such as image guidance for PAM and endoscopy. Further, the two modalities provide complementary information. However, implementation of the probe with miniature size and high resolution has been technically challenging. The novel design of using an imaging fiber bundle and a gradient- index lens offers a simple approach to realize such a miniature probe.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154918/1/jbio201960200.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154918/2/jbio201960200_am.pd

    NSs, the Silencing Suppressor of Tomato Spotted Wilt Orthotospovirus, Interferes with JA-Regulated Host Terpenoids Expression to Attract \u3cem\u3eFrankliniella occidentalis\u3c/em\u3e

    Get PDF
    Tomato spotted wilt orthotospovirus (TSWV) causes serious crop losses worldwide and is transmitted by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). NSs protein is the silencing suppressor of TSWV and plays an important role in virus infection, cycling, and transmission process. In this research, we investigated the influences of NSs protein on the interaction of TSWV, plants, and F. occidentalis with the transgenic Arabidopsis thaliana. Compared with the wild-type Col-0 plant, F. occidentalis showed an increased number and induced feeding behavior on transgenic Arabidopsis thaliana expressing exogenous NSs. Further analysis showed that NSs reduced the expression of terpenoids synthesis-related genes and the content of monoterpene volatiles in Arabidopsis. These monoterpene volatiles played a repellent role in respect to F. occidentalis. In addition, the expression level of plant immune-related genes and the content of the plant resistance hormone jasmonic acid (JA) in transgenic Arabidopsis were reduced. The silencing suppressor of TSWV NSs alters the emission of plant volatiles and reduces the JA-regulated plant defenses, resulting in enhanced attractiveness of plants to F. occidentalis and may increase the transmission probability of TSWV

    Identification of dominant propagation paths based on sub-synchronous oscillation using branch oscillation energy distribution coefficient

    Get PDF
    The large-scale integration of wind power into the power grid can cause a new type of sub-synchronous power oscillation, different from traditional thermal power generation. The oscillation energy will spread extensively in the grid, causing power oscillation and even grid-cascading events. To address this issue, this article proposes a method for quantitatively analyzing the propagation characteristics of oscillation energy based on branch oscillation energy. Firstly, analyzing the oscillation energy shared by different branches in the network based on transient energy function. Next, a method is proposed to identify the dominant propagation path of sub-synchronous oscillation by defining the oscillation energy of branches under the dominant oscillation mode and the oscillation energy distribution coefficient of each branch. The oscillation partition set formed by the dominant propagation path can be used to locate the high-risk oscillation area of the system. Finally, the effectiveness of the method proposed in this paper for studying the wide-area propagation characteristics of sub-synchronous oscillations was verified through time-domain simulation analysis

    The Effect of Zn-Al-Hydrotalcites Composited with Calcium Stearate and β-Diketone on the Thermal Stability of PVC

    Get PDF
    A clean-route synthesis of Zn-Al-hydrotalcites (Zn-Al-LDHs) using zinc oxide and sodium aluminate solution has been developed. The as-obtained materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The effects of metal ions at different molar ratios on the performance of hydrotalcites were discussed. The results showed that the Zn-Al-hydrotalcites can be successfully synthesized at three different Zn/Al ratios of 3:1, 2:1 and 1:1. Thermal aging tests of polyvinyl chloride (PVC) mixed with Zn-Al-LDHs, calcium stearate (CaSt2) and β-diketone were carried out in a thermal aging test box by observing the color change. The results showed that Zn-Al-LDHs can not only enhance the stability of PVC significantly due to the improved capacity of HCl-adsorption but also increase the initial stability and ensure good-initial coloring due to the presence of the Zn element. The effects of various amounts of Zn-Al-LDHs, CaSt2 and β-diketone on the thermal stability of PVC were discussed. The optimum composition was determined to be 0.1 g Zn-Al-LDHs, 0.15 g CaSt2 and 0.25 g β-diketone in 5 g PVC

    Flow characteristics of the proximal pulmonary arteries and vena cava in patients with chronic thromboembolic pulmonary hypertension: correlation between 3.0 T phase-contrast MRI and right heart catheterization

    Get PDF
    PURPOSEWe aimed to determine the correlation between flow characteristics of the proximal pulmonary arteries and vena cava obtained by 3.0 T phase-contrast magnetic resonance imaging (MRI) and hemodynamic characteristics by right heart catheterization in patients with chronic thromboembolic pulmonary hypertension.MATERIALS AND METHODSTwenty consecutive patients with chronic thromboembolic pulmonary hypertension and 20 sex- and age-matched healthy volunteers were included prospectively. All patients and controls underwent phase-contrast MRI to determine the flow characteristics including peak velocity, mean velocity, and mean blood flow of the proximal pulmonary artery and vena cava. All patients underwent right heart catheterization to determine the hemodynamics.RESULTSPeak velocity and mean velocity of the proximal pulmonary artery were significantly lower in the patient group. In patients, both peak velocity and mean blood flow were sequentially decreased in the main pulmonary artery, left and right pulmonary arteries, and left and right interlobar pulmonary arteries. Inferior vena cava had higher peak velocity, mean velocity, and mean blood flow than superior vena cava. Peak velocity of the main pulmonary artery correlated with mean and diastolic pulmonary artery pressure. Peak velocity of both inferior and superior vena cava strongly correlated with the pulmonary vascular resistance index (PVRI) (r=-0.68, P < 0.001 and r=-0.74, P < 0.001, respectively). Mean velocity of the main pulmonary artery and right pulmonary artery strongly correlated with PVRI and mean pulmonary artery pressure. Mean velocity of the superior vena cava and mean blood flow of the main pulmonary artery strongly correlated with PVRI and right cardiac work index.CONCLUSIONBlood flow in the proximal pulmonary artery and vena cava evaluated by phase-contrast MRI correlate with hemodynamic parameters of right heart catheterization and can be used to noninvasively evaluate the severity of chronic thromboembolic pulmonary hypertension and, potentially, to follow up the treatment response

    Duck TRIM29 negatively regulates type I IFN production by targeting MAVS

    Get PDF
    The innate immune response is a host defense mechanism that induces type I interferon and proinflammatory cytokines. Tripartite motif (TRIM) family proteins have recently emerged as pivotal regulators of type I interferon production in mammals. Here, we first identified duck TRIM29, which encodes 571 amino acids and shows high sequence homology with other bird TRIM29 proteins. DuTRIM29 inhibited IFN-β and IRF7 promoter activation in a dose-dependent manner and downregulated the mRNA expression of IFN-β, IRF7, Mx and IL-6 mediated by duRIG-I. Moreover, duTRIM29 interacted and colocalized with duMAVS in the cytoplasm. DuTRIM29 interacted with duMAVS via its C-terminal domains. In addition, duTRIM29 inhibited IFN-β and IRF7 promoter activation and significantly downregulated IFN-β and immune-related gene expression mediated by duMAVS in ducks. Furthermore, duTRIM29 induced K29-linked polyubiquitination and degradation of duMAVS to suppress the expression of IFN-β. Overall, our results demonstrate that duTRIM29 negatively regulates type I IFN production by targeting duMAVS in ducks. This study will contribute to a better understanding of the molecular mechanism regulating the innate immune response by TRIM proteins in ducks
    corecore