453 research outputs found
Hydroelastic waves propagating in an ice-covered channel
The hydroelastic waves in a channel covered by an ice sheet, without or with crack and subject to various edge constraints at channel banks, are investigated based on the linearized velocity potential theory for the fluid domain and the thin-plate elastic theory for the ice sheet. An effective analytical solution procedure is developed through expanding the velocity potential and the fourth derivative of the ice deflection to a series of cosine functions with unknown coefficients. The latter are integrated to obtain the expression for the deflection, which involves four constants. The procedure is then extended to the case with a longitudinal crack in the ice sheet by using the Dirac delta function and its derivatives at the crack in the dynamic equation, with unknown jumps of deflection and slope at the crack. Conditions at the edges and crack are then imposed, from which a system of linear equations for the unknowns is established. From this, the dispersion relation between the wave frequency and wavenumber is found, as well as the natural frequency of the channel. Extensive results are then provided for wave celerity, wave profiles and strain in the ice sheet. In-depth discussions are made on the effects of the edge condition, and the crack
Natural Modes of Liquid Sloshing in a Cylindrical Container with an Elastic Cover
Liquid sloshing and its interaction with an elastic cover in a cylindrical tank is considered. The velocity potential for the fluid flow is expanded into the Bessel-Fourier series as commonly used. An efficient scheme is then developed, which allows the plate deflection to use the same type of expansion as the potential. When these two series are matched on the interface of the fluid and the plate, the unknown coefficients in the two expansions can be easily obtained. This is much more convenient than the common procedure where a different expansion is used for the plate and upon matching each term in the series of the plate is further expanded into the series used for the potential. Through the developed method, an explicit equation is derived for the natural frequencies and extensive results are provided. The corresponding natural mode shapes and principal strains distribution of the elastic cover are also investigated. Results are provided and the underlining physics is discussed. To verify the obtained results, the problem is also solved through a different method in which the potential is first expanded into vertical modes. Another explicit equation for the natural frequencies is derived. While the equation may be in a very different form, through the residual theorem, it is found that the second equation is identical to the first one
Interactions of waves with a body floating in an open water channel confined by two semi-infinite ice sheets
Wave radiation and diffraction problems of a body floating in an open water channel confined by two semi-infinite ice sheets are considered. The linearized velocity potential theory is used for fluid flow and a thin elastic plate model is adopted for the ice sheet. The Green function, which satisfies all the boundary conditions apart from that on the body surface, is first derived. This is obtained through applying Fourier transform in the longitudinal direction of the channel, and matched eigenfunction expansions in the transverse plane. With the help of the derived Green function, the boundary integral equation of the potential is derived and it is shown that the integrations over all other boundaries, including the bottom of the fluid, free surface, ice sheet, ice edge as well as far field will be zero, and only the body surface has to be retained. This allows the problem to be solved through discretization of the body surface only. Detailed results for hydrodynamic forces are provided, which are generally highly oscillatory owing to complex wave–body–channel interaction and body–body interaction. In depth investigations are made for the waves confined in a channel, which does not decay at infinity. Through this, a detailed analysis is presented on how the wave generated by a body will affect the other bodies even when they are far apart
Wave diffraction by multiple arbitrary shaped cracks in an infinitely extended ice sheet of finite water depth
lexural-gravity wave interactions with multiple cracks in an ice sheet of infinite extent are considered, based on the linearized velocity potential theory for fluid flow and thin elastic plate model for an ice sheet. Both the shape and location of the cracks can be arbitrary, while an individual crack can be either open or closed. Free edge conditions are imposed at the crack. For open cracks, zero corner force conditions are further applied at the crack tips. The solution procedure starts from series expansion in the vertical direction based on separation of variables, which decomposes the three-dimensional problem into an infinite number of coupled two-dimensional problems in the horizontal plane. For each two-dimensional problem, an integral equation is derived along the cracks, with the jumps of displacement and slope of the ice sheet as unknowns in the integrand. By extending the crack in the vertical direction into the fluid domain, an artificial vertical surface is formed, on which an orthogonal inner product is adopted for the vertical modes. Through this, the edge conditions at the cracks are satisfied, together with continuous conditions of pressure and velocity on the vertical surface. The integral differential equations are solved numerically through the boundary element method together with the finite difference scheme for the derivatives along the crack. Extensive results are provided and analysed for cracks with various shapes and locations, including the jumps of displacement and slope, diffraction wave coefficient, and the scattered cross-section
Female Resistance to Invading Males Increases Infanticide in Langurs
BACKGROUND: Infanticide by adult male occurs in many mammalian species under natural conditions, and it is often assumed to be a goal-directed action and explained predominately by sexual selection. Motivation of this behavior in mammals is limitedly involved. METHODOLOGY AND PRINCIPAL FINDINGS: We used long-term reproductive records and direct observation in captivity and in the field of two snub-nosed langur species on the basis of individual identification to investigate how infanticide happened and to be avoided in nonhuman primates. Our observations suggested that infanticide by invading males might be more accidental than goal-directed. The invading male seemed to monopolize all the females including lactating mothers during takeovers. Multiparous mothers who accepted the invading male shortly after takeovers avoided infanticide in most cases. Our results conjectured primiparous mothers would decrease infanticidal possibility if they sexually accepted the invading male during or immediately after takeovers. In the studied langur species, voluntary abortion or mating with the invading male was evidently adopted by females to limit or avoid infanticide by takeover males. CONCLUSIONS AND SIGNIFICANCE: The objective of the invading male was to monopolize all adult females after his takeover. It appeared that the mother's resistance to accepting the new male as a mating partner was the primary incentive for infanticide. Motivation analysis might be helpful to further understand why infanticide occurs in primate species
Spin and valley quantum Hall ferromagnetism in graphene
In a graphene Landau level (LL), strong Coulomb interactions and the fourfold
spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At
partial filling, exchange interactions can spontaneously break this symmetry,
manifesting as additional integer quantum Hall plateaus outside the normal
sequence. Here we report the observation of a large number of these quantum
Hall isospin ferromagnetic (QHIFM) states, which we classify according to their
real spin structure using temperature-dependent tilted field magnetotransport.
The large measured activation gaps confirm the Coulomb origin of the broken
symmetry states, but the order is strongly dependent on LL index. In the high
energy LLs, the Zeeman effect is the dominant aligning field, leading to real
spin ferromagnets with Skyrmionic excitations at half filling, whereas in the
`relativistic' zero energy LL, lattice scale anisotropies drive the system to a
spin unpolarized state, likely a charge- or spin-density wave.Comment: Supplementary information available at http://pico.phys.columbia.ed
Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry
Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15-subunit, 670 kDa complex of Pol II with the initiation factor TFIIF at peptide resolution. The N-terminal regions of TFIIF subunits Tfg1 and Tfg2 form a dimerization domain that binds the Pol II lobe on the Rpb2 side of the active centre cleft near downstream DNA. The C-terminal winged helix (WH) domains of Tfg1 and Tfg2 are mobile, but the Tfg2 WH domain can reside at the Pol II protrusion near the predicted path of upstream DNA in the initiation complex. The linkers between the dimerization domain and the WH domains in Tfg1 and Tfg2 are located to the jaws and protrusion, respectively. The results suggest how TFIIF suppresses non-specific DNA binding and how it helps to recruit promoter DNA and to set the transcription start site. This work establishes cross-linking/MS as an integrated structure analysis tool for large multi-protein complexes
Delayed Postconditioning Protects against Focal Ischemic Brain Injury in Rats
We and others have reported that rapid ischemic postconditioning, interrupting early reperfusion after stroke, reduces infarction in rats. However, its extremely short therapeutic time windows, from a few seconds to minutes after reperfusion, may hinder its clinical translation. Thus, in this study we explored if delayed postconditioning, which is conducted a few hours after reperfusion, offers protection against stroke.Focal ischemia was generated by 30 min occlusion of bilateral common carotid artery (CCA) combined with permanent occlusion of middle cerebral artery (MCA); delayed postconditioning was performed by repetitive, brief occlusion and release of the bilateral CCAs, or of the ipsilateral CCA alone. As a result, delayed postconditioning performed at 3h and 6h after stroke robustly reduced infarct size, with the strongest protection achieved by delayed postconditioning with 6 cycles of 15 min occlusion/15 min release of the ipsilateral CCA executed from 6h. We found that this delayed postconditioning provided long-term protection for up to two months by reducing infarction and improving outcomes of the behavioral tests; it also attenuated reduction in 2-[(18)F]-fluoro-2-deoxy-D-glucose (FDG)-uptake therefore improving metabolism, and reduced edema and blood brain barrier leakage. Reperfusion in ischemic stroke patients is usually achieved by tissue plasminogen activator (tPA) application, however, t-PA's side effect may worsen ischemic injury. Thus, we tested whether delayed postconditioning counteracts the exacerbating effect of t-PA. The results showed that delayed postconditioning mitigated the worsening effect of t-PA on infarction.Delayed postconditioning reduced ischemic injury after focal ischemia, which opens a new research avenue for stroke therapy and its underlying protective mechanisms
An influenza virus-inspired polymer system for the timed release of siRNA
Small interfering RNA silences specific genes by interfering with mRNA translation, and acts to modulate or inhibit specific biological pathways; a therapy that holds great promise in the cure of many diseases. However, the naked small interfering RNA is susceptible to degradation by plasma and tissue nucleases and due to its negative charge unable to cross the cell membrane. Here we report a new polymer carrier designed to mimic the influenza virus escape mechanism from the endosome, followed by a timed release of the small interfering RNA in the cytosol through a self-catalyzed polymer degradation process. Our polymer changes to a negatively charged and non-toxic polymer after the release of small interfering RNA, presenting potential for multiple repeat doses and long-term treatment of diseases
- …