10 research outputs found

    Nebulized antibiotics in mechanically ventilated patients: a challenge for translational research from technology to clinical care

    No full text
    Abstract Nebulized antibiotic therapy directly targets airways and lung parenchyma resulting in high local concentrations and potentially lower systemic toxicities. Experimental and clinical studies have provided evidence for elevated lung concentrations and rapid bacterial killing following the administration of nebulized antibiotics during mechanical ventilation. Delivery of high concentrations of antibiotics to infected lung regions is the key to achieving efficient nebulized antibiotic therapy. However, current non-standardized clinical practice, the difficulties with implementing optimal nebulization techniques and the lack of robust clinical data have limited its widespread adoption. The present review summarizes the techniques and clinical constraints for optimal delivery of nebulized antibiotics to lung parenchyma during invasive mechanical ventilation. Pulmonary pharmacokinetics and pharmacodynamics of nebulized antibiotic therapy to treat ventilator-associated pneumonia are discussed and put into perspective. Experimental and clinical pharmacokinetics and pharmacodynamics support the use of nebulized antibiotics. However, its clinical benefits compared to intravenous therapy remain to be proved. Future investigations should focus on continuous improvement of nebulization practices and techniques. Before expanding its clinical use, careful design of large phase III randomized trials implementing adequate therapeutic strategies in targeted populations is required to demonstrate the clinical effectiveness of nebulized antibiotics in terms of patient outcomes and reduction in the emergence of antibiotic resistance

    Clinical Pharmacokinetics of Inhaled Antimicrobials

    No full text
    Administration of inhaled antimicrobials affords the ability to achieve targeted drug delivery into the respiratory tract, rapid entry into the systemic circulation, high bioavailability and minimal metabolism. These unique pharmacokinetic characteristics make inhaled antimicrobial delivery attractive for the treatment of many pulmonary diseases. This review examines recent pharmacokinetic trials with inhaled antibacterials, antivirals and antifungals, with an emphasis on the clinical implications of these studies. The majority of these studies revealed evidence of high antimicrobial concentrations in the airway with limited systemic exposure, thereby reducing the risk of toxicity. Sputum pharmacokinetics varied widely, which makes it challenging to interpret the result of sputum pharmacokinetic studies. Many no vel inhaled antimicrobial therapies are currently under investigation that will require detailed pharmacokinetic studies, including combination inhaled antimicrobial therapies, inhaled nanoparticle formulations of several antibacterials, inhaled non-antimicrobial adjuvants, inhaled antiviral recombinant protein therapies and semi-synthetic inhaled antifungal agents. Additionally, the development of new inhaled delivery devices, particularly for mechanically ventilated patients, will result in a pressing need for additional pharmacokinetic studies to identify optimal dosing regimens

    Task force on management and prevention of Acinetobacter baumannii infections in the ICU

    No full text

    Individualising Therapy to Minimize Bacterial Multidrug Resistance

    No full text
    corecore