95 research outputs found

    Carbon Monoxide and Heme Oxygenase-1 Prevent Intestinal Inflammation in Mice by Promoting Bacterial Clearance

    Get PDF
    Heme oxygenase-1 (HO-1) and its metabolic by-product, carbon monoxide (CO), protect against intestinal inflammation in experimental models of colitis, but little is known about their intestinal immune mechanisms. We investigated the interactions among CO, HO-1, and the enteric microbiota in mice and zebrafish

    NFIL3-Deficient Mice Develop Microbiota-Dependent, IL-12/23-Driven Spontaneous Colitis

    Get PDF
    NFIL3 (nuclear factor, IL-3 regulated) is a transcription factor that regulates multiple immunologic functions. In myeloid cells, NFIL3 is IL-10 inducible, and has a key role as a repressor of IL-12p40 transcription. NFIL3 is a susceptibility gene for the human inflammatory bowel diseases. Here we describe spontaneous colitis in Nfil3−/− mice. Mice lacking both Nfil3 and Il10 (NIDKO) had severe early-onset colitis, suggesting NFIL3 and IL-10 independently regulate mucosal homeostasis. Lymphocytes were necessary for colitis, as Nfil3/Rag1 double knockout (NRDKO) mice were protected from disease. However, NRDKO mice adoptively transferred with wild type CD4+ T cells developed severe colitis compared to Rag1−/− recipients, suggesting that colitis was linked to defects in innate immune cells. Colitis was abrogated in Nfil3/Il12b double-deficient mice, identifying Il12b dysregulation as a central pathogenic event. Finally, germ-free Nfil3−/− mice do not have colonic inflammation. Thus, NFIL3 is a microbiota-dependent, IL-10-independent regulator of mucosal homeostasis via IL-12p40

    A Cell Permeable Peptide Inhibitor of NFAT Inhibits Macrophage Cytokine Expression and Ameliorates Experimental Colitis

    Get PDF
    Nuclear factor of activated T cells (NFAT) plays a critical role in the development and function of immune and non-immune cells. Although NFAT is a central transcriptional regulator of T cell cytokines, its role in macrophage specific gene expression is less defined. Previous work from our group demonstrated that NFAT regulates Il12b gene expression in macrophages. Here, we further investigate NFAT function in murine macrophages and determined the effects of a cell permeable NFAT inhibitor peptide 11R-VIVIT on experimental colitis in mice. Treatment of bone marrow derived macrophages (BMDMs) with tacrolimus or 11R-VIVIT significantly inhibited LPS and LPS plus IFN-γ induced IL-12 p40 mRNA and protein expression. IL-12 p70 and IL-23 secretion were also decreased. NFAT nuclear translocation and binding to the IL-12 p40 promoter was reduced by NFAT inhibition. Experiments in BMDMs from IL-10 deficient (Il10−/−) mice demonstrate that inhibition of IL-12 expression by 11R-VIVIT was independent of IL-10 expression. To test its therapeutic potential, 11R-VIVIT was administered systemically to Il10−/− mice with piroxicam-induced colitis. 11R-VIVIT treated mice demonstrated significant improvement in colitis compared to mice treated with an inactive peptide. Moreover, decreased spontaneous secretion of IL-12 p40 and TNF in supernatants from colon explant cultures was demonstrated. In summary, NFAT, widely recognized for its role in T cell biology, also regulates important innate inflammatory pathways in macrophages. Selective blocking of NFAT via a cell permeable inhibitory peptide is a promising therapeutic strategy for the treatment of inflammatory bowel diseases

    Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson\u27s disease study

    Get PDF
    \ua9 The Author(s) 2024. Estimates of the spectrum and frequency of pathogenic variants in Parkinson’s disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson’s disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∼0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≤ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≤ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9 7 10−34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1 7 10−35). Female patients were 22% more likely to have a positive PDGT (P = 3 7 10−4), and for individuals with FH+ this likelihood was 55% higher (P = 1 7 10−14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∼15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD
    corecore