4,311 research outputs found
Assessment of the genotoxicity of quinolone and fluoroquinolones contaminated soil with the Vicia faba micronucleus test
The genotoxicity of quinolone and fluroquinolones was assessed using the micronucleus (MN) test on Viciafaba roots by direct contact exposure to a solid matrix. Plants were exposed to quinolones (nalidixic acid) and fluoroquinolones (ciprofloxacin and enrofloxacin) alone or mixed with artificially contaminatedsoils. Four different concentrations of each of these antibiotics were tested (0.01, 0.1, 1 and 10 mg/Kg) for nalidixic acid and (0.005, 0.05, 0.5 and 5 mg/Kg) for ciprofloxacin and enrofloxacin. These antibiotics were also used in mixture. Exposure of Vicia faba plants to each antibiotic at the highest two concentrations showed significant MN induction. The lowest two concentrations had no significant genotoxic effect. The mixture of the three compounds induced a significant MN induction whatever the mixture tested, from 0.02 to 20 mg/Kg. The results indicated that a similar genotoxic effect was obtained with the mixture at 0.2 mg/Kg in comparison with each molecule alone at 5–10 mg/Kg. Data revealed a clear synergism of these molecules on Vicia faba genotoxicity
Orbital-quenching-induced magnetism in Ba_2NaOsO_6
The double perovskite \bnoo with heptavalent Os () is observed to remain
in the ideal cubic structure ({\it i.e.} without orbital ordering) despite
single occupation of the orbitals, even in the ferromagnetically
ordered phase below 6.8 K. Analysis based on the {\it ab initio} dispersion
expressed in terms of an Os -based Wannier function picture, spin-orbit
coupling, Hund's coupling, and strong Coulomb repulsion shows that the magnetic
OsO cluster is near a moment-less condition due to spin and orbital
compensation. Quenching (hybridization) then drives the emergence of the small
moment. This compensation, unprecedented in transition metals, arises in a
unified picture that accounts for the observed Mott insulating behavior.Comment: in press at Europhysics Letter
Recommended from our members
Depression predicts revascularization procedures for 5 years after coronary angiography.
OBJECTIVE:Depression has been reported to increase cardiac event rates and functional impairment in patients with coronary disease. This article describes the impact of depression on subsequent healthcare utilization for such patients. METHODS:One hundred ninety-eight health maintenance organization patients with stable coronary disease were interviewed after elective angiography using a structured psychiatric diagnostic scale. Cardiac events, hospitalizations, procedures, and costs were monitored for the next 5 years through automated data. Subjects were classified at the time of angiography by modified DSM-IV criteria into those with major, minor, and no depression. RESULTS:In univariate analyses, the no depression group (N = 136) was most likely to receive coronary artery bypass grafting (CABG) (61% vs. 36% in the major depression group vs. 27% in the minor depression group, p =.001), and the major depression group (N = 25) was most likely to receive percutaneous transluminal coronary angioplasty (PTCA) (44% vs. 14% in the minor depression group vs. 24% in the no depression group). The minor depression group (N = 37) was least likely to be hospitalized for cardiac reasons during follow-up (54% vs. 80% in the major depression group vs. 80% in the no depression group, p =.005). Five-year rates of myocardial infarction and death did not differ significantly between groups. Proportional hazard models showed that those in the depression groups differed in time from catheterization to CABG (chi2(2) = 11.9, p =.003) and time to PCTA (chi2(2) = 7.74, p =.02) after controlling for relevant covariates. Median regression showed that patients with no depression had higher costs during the first year but tended to have lower costs in years 2 through 5 than patients with minor or major depression. CONCLUSIONS:Depression status at angiography is associated with the need for revascularization and total healthcare costs for the following year
Coexisting Kondo singlet state with antiferromagnetic long-range order: A possible ground state for Kondo insulators
The ground-state phase diagram of a half-filled anisotropic Kondo lattice
model is calculated within a mean-field theory. For small transverse exchange
coupling , the ground state shows an antiferromagnetic
long-range order with finite staggered magnetizations of both localized spins
and conduction electrons. When , the long-range order
is destroyed and the system is in a disordered Kondo singlet state with a
hybridization gap. Both ground states can describe the low-temperature phases
of Kondo insulating compounds. Between these two distinct phases, there may be
a coexistent regime as a result of the balance between local Kondo screening
and magnetic interactions.Comment: four pages, Revtex, one figure; to be published in Phys. Rev. B, 1
July issue, 200
Configuration Mixing within the Energy Density Functional Formalism: Removing Spurious Contributions from Non-Diagonal Energy Kernels
Multi-reference calculations along the lines of the Generator Coordinate
Method or the restoration of broken symmetries within the nuclear Energy
Density Functional (EDF) framework are becoming a standard tool in nuclear
structure physics. These calculations rely on the extension of a
single-reference energy functional, of the Gogny or the Skyrme types, to
non-diagonal energy kernels. There is no rigorous constructive framework for
this extension so far. The commonly accepted way proceeds by formal analogy
with the expressions obtained when applying the generalized Wick theorem to the
non-diagonal matrix element of a Hamilton operator between two product states.
It is pointed out that this procedure is ill-defined when extended to EDF
calculations as the generalized Wick theorem is taken outside of its range of
applicability. In particular, such a procedure is responsible for the
appearance of spurious divergences and steps in multi-reference EDF energies,
as was recently observed in calculations restoring particle number or angular
momentum. In the present work, we give a formal analysis of the origin of this
problem for calculations with and without pairing, i.e. constructing the
density matrices from either Slater determinants or quasi-particle vacua. We
propose a correction to energy kernels that removes the divergences and steps,
and which is applicable to calculations based on any symmetry restoration or
generator coordinate. The method is formally illustrated for particle number
restoration and is specified to configuration mixing calculations based on
Slater determinants.Comment: 27 pages, 1 figure, accepted for publication in PR
Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?
The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40Ca
has been investigated in high energy-resolution experiments using proton
inelastic scattering at E_p = 200 MeV. Fine structure is observed in the region
of the ISGQR and its characteristic energy scales are extracted from the
experimental data by means of a wavelet analysis. The experimental scales are
well described by Random Phase Approximation (RPA) and second-RPA calculations
with an effective interaction derived from a realistic nucleon-nucleon
interaction by the Unitary Correlation Operator Method (UCOM). In these results
characteristic scales are already present at the mean-field level pointing to
their origination in Landau damping, in contrast to the findings in heavier
nuclei and also to SRPA calculations for 40Ca based on phenomenological
effective interactions, where fine structure is explained by the coupling to
two-particle two-hole (2p-2h) states.Comment: Phys. Lett. B, in pres
An Activity Index for Raw Accelerometry Data and Its Comparison with Other Activity Metrics
Accelerometers have been widely deployed in public health studies in recent years. While they collect high-resolution acceleration signals (e.g., 10–100 Hz), research has mainly focused on summarized metrics provided by accelerometers manufactures, such as the activity count (AC) by ActiGraph or Actical. Such measures do not have a publicly available formula, lack a straightforward interpretation, and can vary by software implementation or hardware type. To address these problems, we propose the physical activity index (AI), a new metric for summarizing raw tri-axial accelerometry data. We compared this metric with the AC and another recently proposed metric for raw data, Euclidean Norm Minus One (ENMO), against energy expenditure. The comparison was conducted using data from the Objective Physical Activity and Cardiovascular Health Study, in which 194 women 60–91 years performed 9 lifestyle activities in the laboratory, wearing a tri-axial accelerometer (ActiGraph GT3X+) on the hip set to 30 Hz and an Oxycon portable calorimeter, to record both tri-axial acceleration time series (converted into AI, AC, and ENMO) and oxygen uptake during each activity (converted into metabolic equivalents (METs)) at the same time. Receiver operating characteristic analyses indicated that both AI and ENMO were more sensitive to moderate and vigorous physical activities than AC, while AI was more sensitive to sedentary and light activities than ENMO. AI had the highest coefficients of determination for METs (0.72) and was a better classifier of physical activity intensity than both AC (for all intensity levels) and ENMO (for sedentary and light intensity). The proposed AI provides a novel and transparent way to summarize densely sampled raw accelerometry data, and may serve as an alternative to AC. The AI’s largely improved sensitivity on sedentary and light activities over AC and ENMO further demonstrate its advantage in studies with older adults
Sedentary Behavior and Physical Function Decline in Older Women: Findings from the Women's Health Initiative
Sedentary behavior is associated with deleterious health outcomes. This study evaluated the association between sedentary time and physical function among postmenopausal women in the Women's Health Initiative Observational Study. Data for this prospective cohort study were collected between 1993–1998 (enrollment) and 2009, with an average of 12.3 follow-up years. Analyses included 61,609 women (aged 50–79 years at baseline). Sedentary time was estimated by questionnaire; physical function was measured using the RAND SF-36 physical function scale. Mixed-model analysis of repeated measures was used to estimate the relationship of sedentary time exposures and changes in physical function adjusting for relevant covariates. Compared to women reporting sedentary time of ≤6 hours/day, those with greater amounts of sedentary time (>6–8 hours/day, >8–11 hours/day, >11 hours/day) reported lower physical function between baseline and follow up (coefficient = −0.78, CI = −0.98, −0.57, −1.48, CI = −1.71, −1.25, −3.13, and CI = −3.36, −2.89, respectively P < 0.001). Sedentary time was strongly associated with diminished physical function and most pronounced among older women and those reporting the greatest sedentary time. Maintaining physical function with age may be improved by pairing messages to limit sedentary activities with those promoting recommended levels of physical activity
- …