4,311 research outputs found

    Assessment of the genotoxicity of quinolone and fluoroquinolones contaminated soil with the Vicia faba micronucleus test

    Get PDF
    The genotoxicity of quinolone and fluroquinolones was assessed using the micronucleus (MN) test on Viciafaba roots by direct contact exposure to a solid matrix. Plants were exposed to quinolones (nalidixic acid) and fluoroquinolones (ciprofloxacin and enrofloxacin) alone or mixed with artificially contaminatedsoils. Four different concentrations of each of these antibiotics were tested (0.01, 0.1, 1 and 10 mg/Kg) for nalidixic acid and (0.005, 0.05, 0.5 and 5 mg/Kg) for ciprofloxacin and enrofloxacin. These antibiotics were also used in mixture. Exposure of Vicia faba plants to each antibiotic at the highest two concentrations showed significant MN induction. The lowest two concentrations had no significant genotoxic effect. The mixture of the three compounds induced a significant MN induction whatever the mixture tested, from 0.02 to 20 mg/Kg. The results indicated that a similar genotoxic effect was obtained with the mixture at 0.2 mg/Kg in comparison with each molecule alone at 5–10 mg/Kg. Data revealed a clear synergism of these molecules on Vicia faba genotoxicity

    Orbital-quenching-induced magnetism in Ba_2NaOsO_6

    Full text link
    The double perovskite \bnoo with heptavalent Os (d1d^1) is observed to remain in the ideal cubic structure ({\it i.e.} without orbital ordering) despite single occupation of the t2gt_{2g} orbitals, even in the ferromagnetically ordered phase below 6.8 K. Analysis based on the {\it ab initio} dispersion expressed in terms of an Os t2gt_{2g}-based Wannier function picture, spin-orbit coupling, Hund's coupling, and strong Coulomb repulsion shows that the magnetic OsO6_6 cluster is near a moment-less condition due to spin and orbital compensation. Quenching (hybridization) then drives the emergence of the small moment. This compensation, unprecedented in transition metals, arises in a unified picture that accounts for the observed Mott insulating behavior.Comment: in press at Europhysics Letter

    Coexisting Kondo singlet state with antiferromagnetic long-range order: A possible ground state for Kondo insulators

    Full text link
    The ground-state phase diagram of a half-filled anisotropic Kondo lattice model is calculated within a mean-field theory. For small transverse exchange coupling J<Jc1J_{\perp}<J_{\perp c1}, the ground state shows an antiferromagnetic long-range order with finite staggered magnetizations of both localized spins and conduction electrons. When J>Jc2J_{\perp}>J_{\perp c2}, the long-range order is destroyed and the system is in a disordered Kondo singlet state with a hybridization gap. Both ground states can describe the low-temperature phases of Kondo insulating compounds. Between these two distinct phases, there may be a coexistent regime as a result of the balance between local Kondo screening and magnetic interactions.Comment: four pages, Revtex, one figure; to be published in Phys. Rev. B, 1 July issue, 200

    Configuration Mixing within the Energy Density Functional Formalism: Removing Spurious Contributions from Non-Diagonal Energy Kernels

    Full text link
    Multi-reference calculations along the lines of the Generator Coordinate Method or the restoration of broken symmetries within the nuclear Energy Density Functional (EDF) framework are becoming a standard tool in nuclear structure physics. These calculations rely on the extension of a single-reference energy functional, of the Gogny or the Skyrme types, to non-diagonal energy kernels. There is no rigorous constructive framework for this extension so far. The commonly accepted way proceeds by formal analogy with the expressions obtained when applying the generalized Wick theorem to the non-diagonal matrix element of a Hamilton operator between two product states. It is pointed out that this procedure is ill-defined when extended to EDF calculations as the generalized Wick theorem is taken outside of its range of applicability. In particular, such a procedure is responsible for the appearance of spurious divergences and steps in multi-reference EDF energies, as was recently observed in calculations restoring particle number or angular momentum. In the present work, we give a formal analysis of the origin of this problem for calculations with and without pairing, i.e. constructing the density matrices from either Slater determinants or quasi-particle vacua. We propose a correction to energy kernels that removes the divergences and steps, and which is applicable to calculations based on any symmetry restoration or generator coordinate. The method is formally illustrated for particle number restoration and is specified to configuration mixing calculations based on Slater determinants.Comment: 27 pages, 1 figure, accepted for publication in PR

    Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

    Full text link
    The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E_p = 200 MeV. Fine structure is observed in the region of the ISGQR and its characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle two-hole (2p-2h) states.Comment: Phys. Lett. B, in pres

    An Activity Index for Raw Accelerometry Data and Its Comparison with Other Activity Metrics

    Get PDF
    Accelerometers have been widely deployed in public health studies in recent years. While they collect high-resolution acceleration signals (e.g., 10–100 Hz), research has mainly focused on summarized metrics provided by accelerometers manufactures, such as the activity count (AC) by ActiGraph or Actical. Such measures do not have a publicly available formula, lack a straightforward interpretation, and can vary by software implementation or hardware type. To address these problems, we propose the physical activity index (AI), a new metric for summarizing raw tri-axial accelerometry data. We compared this metric with the AC and another recently proposed metric for raw data, Euclidean Norm Minus One (ENMO), against energy expenditure. The comparison was conducted using data from the Objective Physical Activity and Cardiovascular Health Study, in which 194 women 60–91 years performed 9 lifestyle activities in the laboratory, wearing a tri-axial accelerometer (ActiGraph GT3X+) on the hip set to 30 Hz and an Oxycon portable calorimeter, to record both tri-axial acceleration time series (converted into AI, AC, and ENMO) and oxygen uptake during each activity (converted into metabolic equivalents (METs)) at the same time. Receiver operating characteristic analyses indicated that both AI and ENMO were more sensitive to moderate and vigorous physical activities than AC, while AI was more sensitive to sedentary and light activities than ENMO. AI had the highest coefficients of determination for METs (0.72) and was a better classifier of physical activity intensity than both AC (for all intensity levels) and ENMO (for sedentary and light intensity). The proposed AI provides a novel and transparent way to summarize densely sampled raw accelerometry data, and may serve as an alternative to AC. The AI’s largely improved sensitivity on sedentary and light activities over AC and ENMO further demonstrate its advantage in studies with older adults

    Sedentary Behavior and Physical Function Decline in Older Women: Findings from the Women's Health Initiative

    Get PDF
    Sedentary behavior is associated with deleterious health outcomes. This study evaluated the association between sedentary time and physical function among postmenopausal women in the Women's Health Initiative Observational Study. Data for this prospective cohort study were collected between 1993–1998 (enrollment) and 2009, with an average of 12.3 follow-up years. Analyses included 61,609 women (aged 50–79 years at baseline). Sedentary time was estimated by questionnaire; physical function was measured using the RAND SF-36 physical function scale. Mixed-model analysis of repeated measures was used to estimate the relationship of sedentary time exposures and changes in physical function adjusting for relevant covariates. Compared to women reporting sedentary time of ≤6 hours/day, those with greater amounts of sedentary time (>6–8 hours/day, >8–11 hours/day, >11 hours/day) reported lower physical function between baseline and follow up (coefficient = −0.78, CI = −0.98, −0.57, −1.48, CI = −1.71, −1.25, −3.13, and CI = −3.36, −2.89, respectively P < 0.001). Sedentary time was strongly associated with diminished physical function and most pronounced among older women and those reporting the greatest sedentary time. Maintaining physical function with age may be improved by pairing messages to limit sedentary activities with those promoting recommended levels of physical activity
    corecore