89,348 research outputs found
Two-phase flow dynamics in the gas diffusion layer of proton exchange membrane fuel cells: Volume of fluid modeling and comparison with experiment
This paper proposes a three-dimensional (3D) volume of fluid (VOF) study to investigate two-phase flow in the gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cells and liquid water distribution. A stochastic model was adopted to reconstruct the 3D microstructures of Toray carbon papers and incorporate the experimentally-determined varying porosity. The VOF predictions were compared with the water profiles obtained by the X-ray tomographic microscopy (XTM) and the Leverett correlation. It was found local water profiles are similar in the sample’s sub-regions under the pressure difference p = 1000 Pa between the two GDL surfaces, but may vary significantly under p = 6000 Pa. The water-air interfaces inside the GDL structure were presented to show water distribution and breakthrough
Recommended from our members
Investigating the in-/through-plane effective diffusivities of dry and partially-saturated gas diffusion layers
In this study, the effective oxygen diffusivity in the dry or partially-saturated gas diffusion layer (GDL) is numerically investigated by an oxygen diffusion model in GDLs reconstructed by a stochastic method. The predicted effective diffusivity in dry GDLs is compared with various diffusivity models from literatures. Reasonable agreements with other models were obtained. The effect of the PTFE loading in the dry Toray carbon paper is also investigated and compared with recent experimental data. It is found that the effective diffusivity becomes lower under higher PTFE loading due to the decreased pore volume, as expected. The relative effective oxygen diffusivity in partially-saturated GDLs is calculated using the two-phase volume of fluid (VOF) model and an oxygen diffusion model. The effects of different local water profiles and porosity distribution on the effective oxygen diffusivity in both the through-plane (TP) and in-plane (IP) directions are investigated and compared with a lattice Boltzmann model and experimental data. The present results are in good agreement with other studies. It is found that local water profile has significant impacts on the effective diffusivity in partially-saturated GDLs and the diffusivity in the TP direction is more sensitive to the water distribution than the IP direction
Recommended from our members
Two-phase flow and oxygen transport in the perforated gas diffusion layer of proton exchange membrane fuel cell
Liquid water transport in perforated gas diffusion layers (GDLs)is numerically investigated using a three-dimensional (3D)two-phase volume of fluid (VOF)model and a stochastic reconstruction model of GDL microstructures. Different perforation depths and diameters are investigated, in comparison with the GDL without perforation. It is found that perforation can considerably reduce the liquid water level inside a GDL. The perforation diameter (D = 100 μm)and the depth (H = 100 μm)show pronounced effect. In addition, two different perforation locations, i.e. the GDL center and the liquid water break-through point, are investigated. Results show that the latter perforation location works more efficiently. Moreover, the perforation perimeter wettability is studied, and it is found that a hydrophilic region around the perforation further reduces the water saturation. Finally, the oxygen transport in the partially-saturated GDL is studied using an oxygen diffusion model. Results indicate that perforation reduces the oxygen diffusion resistance in GDLs and improves the oxygen concentration at the GDL bottom up to 101% (D = 100 μm and H = 100 μm)
X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables
Compton scattering within the accretion column of magnetic cataclysmic
variables (mCVs) can induce a net polarization in the X-ray emission. We
investigate this process using Monte Carlo simulations and find that
significant polarization can arise as a result of the stratified flow structure
in the shock-ionized column. We find that the degree of linear polarization can
reach levels up to ~8% for systems with high accretion rates and low
white-dwarf masses, when viewed at large inclination angles with respect to the
accretion column axis. These levels are substantially higher than previously
predicted estimates using an accretion column model with uniform density and
temperature. We also find that for systems with a relatively low-mass white
dwarf accreting at a high accretion rate, the polarization properties may be
insensitive to the magnetic field, since most of the scattering occurs at the
base of the accretion column where the density structure is determined mainly
by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA
Switching magnetoresistance in vertically interfaced Pr0.5Ca0.5MnO3 grown on ZnO nanowires
The synthesis, morphology and magneto-transport properties of
nanostructure-engineered charge-ordered Pr0.5Ca0.5MnO3 grown on ZnO nanowires
are reported. The stability of the charge-ordering can be tuned, but more
interestingly the sign of the magnetoresistance is inverted at low
temperatures. Coexistence of ferromagnetic clusters on the surface and
antiferromagnetic phase in the core of the grains were considered in order to
understand these features. This work suggests that such a process of growing on
nanowires network can be readily extended to other transition metal oxides and
open doors towards tailoring their functionalities.Comment: 7 pages, 4 figures, to be published in Applied Physics Letter
Quantum pumping in graphene nanoribbons at resonant transmission
Adiabatic quantum charge pumping in graphene nanoribbon double barrier
structures with armchair and zigzag edges in the resonant transmission regime
is analyzed. Using recursive Green's function method we numerically calculate
the pumped charge for pumping contours encircling a resonance. We find that for
armchair ribbons the whole resonance line contributes to the pumping of a
single electron (ignoring double spin degeneracy) per cycle through the device.
The case of zigzag ribbons is more interesting due to zero-conductance
resonances. These resonances separate the whole resonance line into several
parts, each of which corresponds to the pumping of a single electron through
the device. Moreover, in contrast to armchair ribbons, one electron can be
pumped from the left lead to the right one or backwards. The current direction
depends on the particular part of the resonance line encircled by the pumping
contour.Comment: 6 pages, 5 figures. This is an author-created, un-copyedited version
of an article accepted for publication in EPL. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The definitive publisher authenticated version
is available online at 10.1209/0295-5075/92/4701
- …