10,518 research outputs found

    Pressure effects on the heavy-fermion antiferromagnet CeAuSb2

    Full text link
    The f-electron compound CeAuSb2, which crystallizes in the ZrCuSi2-type tetragonal structure, orders antiferromagnetically between 5 and 6.8 K, where the antiferromagnetic transition temperature T_N depends on the occupancy of the Au site. Here we report the electrical resistivity and heat capacity of a high-quality crystal CeAuSb2 with T_N of 6.8 K, the highest for this compound. The magnetic transition temperature is initially suppressed with pressure, but is intercepted by a new magnetic state above 2.1 GPa. The new phase shows a dome shape with pressure and coexists with another phase at pressures higher than 4.7 GPa. The electrical resistivity shows a T^2 Fermi liquids behavior in the complex magnetic state, and the residual resistivity and the T^2 resistivity coefficient increases with pressure, suggesting the possibility of a magnetic quantum critical point at a higher pressure.Comment: 5 pages, 5 firure

    Hybridization gap and Fano resonance in SmB6{_6}

    Full text link
    We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the "Kondo insulator" SmB6_6. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstructed, Sm- or B-terminated surfaces were found. On the smallest patches, clear indications for the hybridization gap and inter-multiplet transitions were observed. On non-reconstructed surface areas large enough for coherent co-tunneling we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure.Comment: 5 pages, 4 figure

    Interpolation function of the genocchi type polynomials

    Full text link
    The main purpose of this paper is to construct not only generating functions of the new approach Genocchi type numbers and polynomials but also interpolation function of these numbers and polynomials which are related to a, b, c arbitrary positive real parameters. We prove multiplication theorem of these polynomials. Furthermore, we give some identities and applications associated with these numbers, polynomials and their interpolation functions.Comment: 14 page

    Putative spin liquid in the triangle-based iridate Ba3_3IrTi2_2O9_9

    Full text link
    We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba3_3IrTi2_2O9_9, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite of strong antiferromagnetic exchange interaction of the order of 100~K, we find no hint for long-range magnetic order down to 23 mK. The magnetic specific heat data unveil the TT-linear and -squared dependences at low temperatures below 1~K. At the respective temperatures, the zero-field muon spin relaxation features a persistent spin dynamics, indicative of unconventional low-energy excitations. A comparison to the 4d4d isostructural compound Ba3_3RuTi2_2O9_9 suggests that a concerted interplay of compass-like magnetic interactions and frustrated geometry promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte

    Correlation effects in CaCu3Ru4O12

    Full text link
    We have investigated the electronic structure of CaCu3Ru4O12 and LaCu3Ru4O12 using soft x-ray photoelectron and absorption spectroscopy together with band structure and cluster configuration interaction calculations. We found the Cu to be in a robust divalent ionic state while the Ru is more itinerant in character and stabilizes the metallic state. Substitution of Ca by La predominantly affects the Ru states. We observed strong correlation effects in the Cu 3d states affecting the valence band line shape considerably. Using resonant photoelectron spectroscopy at the Cu L3 edge we were able to unveil the position of the Zhang-Rice singlet states in the one-electron removal spectrum of the Cu with respect to the Ru-derived metallic bands in the vicinity of the chemical potential

    Superconducting energy gap in MgCNi3 single crystals: Point-contact spectroscopy and specific-heat measurements

    Get PDF
    Specific heat has been measured down to 600 mK and up to 8 Tesla by the highly sensitive AC microcalorimetry on the MgCNi3 single crystals with Tc ~ 7 K. Exponential decay of the electronic specific heat at low temperatures proved that a superconducting energy gap is fully open on the whole Fermi surface, in agreement with our previous magnetic penetration depth measurements on the same crystals. The specific-heat data analysis shows consistently the strong coupling strength 2D/kTc ~ 4. This scenario is supported by the direct gap measurements via the point-contact spectroscopy. Moreover, the spectroscopy measurements show a decrease in the critical temperature at the sample surface accounting for the observed differences of the superfluid density deduced from the measurements by different techniques

    Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model

    Full text link
    The two-dimensional kinetic Ising model, when exposed to an oscillating applied magnetic field, has been shown to exhibit a nonequilibrium, second-order dynamic phase transition (DPT), whose order parameter Q is the period-averaged magnetization. It has been established that this DPT falls in the same universality class as the equilibrium phase transition in the two-dimensional Ising model in zero applied field. Here we study for the first time the scaling of the dynamic order parameter with respect to a nonzero, period-averaged, magnetic `bias' field, H_b, for a DPT produced by a square-wave applied field. We find evidence that the scaling exponent, \delta_d, of H_b at the critical period of the DPT is equal to the exponent for the critical isotherm, \delta_e, in the equilibrium Ising model. This implies that H_b is a significant component of the field conjugate to Q. A finite-size scaling analysis of the dynamic order parameter above the critical period provides further support for this result. We also demonstrate numerically that, for a range of periods and values of H_b in the critical region, a fluctuation-dissipation relation (FDR), with an effective temperature T_{eff}(T, P, H_0) depending on the period, and possibly the temperature and field amplitude, holds for the variables Q and H_b. This FDR justifies the use of the scaled variance of Q as a proxy for the nonequilibrium susceptibility, \partial / \partial H_b, in the critical region.Comment: revised version; 31 pages, 12 figures; accepted by Phys. Rev.

    Hamiltonian analysis of Poincar\'e gauge theory scalar modes

    Full text link
    The Hamiltonian constraint formalism is used to obtain the first explicit complete analysis of non-trivial viable dynamic modes for the Poincar\'e gauge theory of gravity. Two modes with propagating spin-zero torsion are analyzed. The explicit form of the Hamiltonian is presented. All constraints are obtained and classified. The Lagrange multipliers are derived. It is shown that a massive spin-00^- mode has normal dynamical propagation but the associated massless 00^- is pure gauge. The spin-0+0^+ mode investigated here is also viable in general. Both modes exhibit a simple type of ``constraint bifurcation'' for certain special field/parameter values.Comment: 28 pages, LaTex, submitted to International Journal of Modern Physics
    corecore