84,861 research outputs found

    Magnetic effects of large-scale impacts on airless planetary bodies

    Get PDF
    The analysis of lunar orbital and sample data combined with laboratory measurements of impact-produced plasmas suggest that large-scale impacts on planetary surfaces may have had significant magnetic effects. These effects may potentially explain part of all lunar crustal magnetization and, by extension, may be responsible for producing paleomagnetism on other airless silicate bodies in the solar system. Theoretical studies are presented of the magnetic field and remanent magnetization effects of basin-scale impacts on the Moon. The specific case of a Moon exposed to the solar wind plasma flow and its embedded magnetic field is investigated. It is shown that maximum compressed field amplitudes occur antipodal to the impact point in agreement with the observed tendency for orbital magnetic anomalies to be concentrated antipodal to young large lunar basins. Generalization of these results to include magnetic effects of impacts on other airless or nearly airless bodies in the solar system is presented

    Open-closed field algebras

    Full text link
    We introduce the notions of open-closed field algebra and open-closed field algebra over a vertex operator algebra V. In the case that V satisfies certain finiteness and reductivity conditions, we show that an open-closed field algebra over V canonically gives an algebra over a \C-extension of the Swiss-cheese partial operad. We also give a tensor categorical formulation and categorical constructions of open-closed field algebras over V.Comment: 55 pages, largely revised, an old subsection is deleted, a few references are adde

    Sigma_c Dbar and Lambda_c Dbar states in a chiral quark model

    Full text link
    The S-wave Sigma_c Dbar and Lambda_c Dbar states with isospin I=1/2 and spin S=1/2 are dynamically investigated within the framework of a chiral constituent quark model by solving a resonating group method (RGM) equation. The results show that the interaction between Sigma_c and Dbar is attractive, which consequently results in a Sigma_c Dbar bound state with the binding energy of about 5-42 MeV, unlike the case of Lambda_c Dbar state, which has a repulsive interaction and thus is unbound. The channel coupling effect of Sigma_c Dbar and Lambda_c Dbar is found to be negligible due to the fact that the gap between the Sigma_c Dbar and Lambda_c Dbar thresholds is relatively large and the Sigma_c Dbar and Lambda_c Dbar transition interaction is weak.Comment: 7 pages,2 figures. arXiv admin note: text overlap with arXiv:nucl-th/0606056 by other author

    Heavy Pentaquarks

    Full text link
    We construct the spin-flavor wave functions of the possible heavy pentaquarks containing an anti-charm or anti-bottom quark using various clustered quark models. Then we estimate the masses and magnetic moments of the JP=12+J^P={1\over 2}^+ or 32+{3\over 2}^+ heavy pentaquarks. We emphasize the difference in the predictions of these models. Future experimental searches at BESIII, CLEOc, BELLE, and LEP may find these interesting states
    • …
    corecore