67,563 research outputs found

    Effective hadronic Lagrangian for charm mesons

    Get PDF
    An effective hadronic Lagrangian including the charm mesons is introduced to study their interactions in hadronic matter. Using coupling constants that are determined either empirically or by the SU(4) symmetry, we have evaluated the absorption cross sections of J/ψJ/\psi and the scattering cross sections of DD and DD^* by π\pi and ρ\rho mesons.Comment: 5 pages, 4 eps figures, presented at Strangeness 2000, Berkeley. Uses iopart.cl

    Partonic Effects in Heavy Ion Collisions at RHIC

    Full text link
    Effects of partonic interactions in heavy ion collisions at RHIC are studied in a multiphase transport model (AMPT) that includes both initial partonic and final hadronic interactions.It is found that a large parton scattering cross section is needed to understand the measured elliptic flow of pions and two-pion correlation function.Comment: 10 pages, 5 figures, Workshop on Quark and Hadron Dynamics, Budapest, Hungary, March 3-7, 200

    Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving

    Get PDF
    Stratum ventilation can energy efficiently provide good inhaled indoor air quality with a proper operation (e.g., fresh outdoor air ratio). However, the non-uniform CO2 distribution in a stratum-ventilated room challenges the provision of targeted indoor air quality. This study proposes an optimization on the fresh outdoor air ratio of stratum ventilation for both the targeted indoor air quality and maximal energy saving. A model of CO2 concentration in the breathing zone is developed by coupling CO2 removal efficiency in the breathing zone and mass conservation laws. With the developed model, the ventilation parameters corresponding to different fresh outdoor air ratios are quantified to achieve the targeted indoor air quality (i.e., targeted CO2 concentration in the breathing zone). Using the fresh outdoor air ratios and corresponding ventilation parameters as inputs, energy performance evaluations of the air conditioning system are conducted by building energy simulations. The fresh outdoor air ratio with the minimal energy consumption is determined as the optimal one. Experiments show that the mean absolute error of the developed model of CO2 concentration in the breathing zone is 1.9%. The effectiveness of the proposed optimization is demonstrated using TRNSYS that the energy consumption of the air conditioning system with stratum ventilation is reduced by 6.4% while achieving the targeted indoor air quality. The proposed optimization is also promising for other ventilation modes for targeted indoor air quality and improved energy efficiency

    Short-time critical dynamics at perfect and non-perfect surface

    Full text link
    We report Monte Carlo simulations of critical dynamics far from equilibrium on a perfect and non-perfect surface in the 3d Ising model. For an ordered initial state, the dynamic relaxation of the surface magnetization, the line magnetization of the defect line, and the corresponding susceptibilities and appropriate cumulant is carefully examined at the ordinary, special and surface phase transitions. The universal dynamic scaling behavior including a dynamic crossover scaling form is identified. The exponent β1\beta_1 of the surface magnetization and β2\beta_2 of the line magnetization are extracted. The impact of the defect line on the surface universality classes is investigated.Comment: 11figure

    Heat removal efficiency of stratum ventilation for air-side modulation

    Get PDF
    Stratum ventilation has significant thermal non-uniformity between the occupied and upper zones. Although the non-uniformity benefits indoor air quality and energy efficiency, it increases complexities and difficulties in the air-side modulation. In this study, a heat removal efficiency (HRE) model is first established and validated, and then used for the air-side modulation. The HRE model proposed is a function of supply air temperature, supply airflow rate and cooling load. The HRE model proposed has been proven to be applicable to stratum ventilation and displacement ventilation for different room geometries and air terminal configurations, with errors generally within ±5% and a mean absolute error less than 4% for thirty-three experimental cases and five simulated cases. Investigations into the air-side modulation with the proposed HRE model reveal that for both the typical stratum-ventilated classroom and office, the variable-air-volume system can serve a wider range of cooling load than the constant-air-volume system. The assumption of a constant HRE used in the conventional method could lead to errors in the room temperature prediction up to ±1.3 °C, thus the proposed HRE model is important to the air-side modulation for thermal comfort. An air-side modulation method is proposed based on the HRE model to maximize the HRE for improving energy efficiency while maintaining thermal comfort. Results show that the HRE model based air-side modulation can improve the energy efficiency of stratum ventilation up to 67.3%. The HRE model based air-side modulation is also promising for displacement ventilation
    corecore