4 research outputs found

    Optogenetic in vivo cell manipulation in KillerRed-expressing zebrafish transgenics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>KillerRed (KR) is a novel photosensitizer that efficiently generates reactive oxygen species (ROS) in KR-expressing cells upon intense green or white light illumination <it>in vitro</it>, resulting in damage to their plasma membrane and cell death.</p> <p>Results</p> <p>We report an <it>in vivo </it>modification of this technique using a fluorescent microscope and membrane-tagged KR (mem-KR)-expressing transgenic zebrafish. We generated several stable zebrafish <it>Tol2 </it>transposon-mediated enhancer-trap (ET) transgenic lines expressing mem-KR (SqKR series), and mapped the transposon insertion sites. As mem-KR accumulates on the cell membrane and/or Golgi, it highlights cell bodies and extensions, and reveals details of cellular morphology. The photodynamic property of KR made it possible to damage cells expressing this protein in a dose-dependent manner. As a proof-of-principle, two zebrafish transgenic lines were used to affect cell viability and function: SqKR2 expresses mem-KR in the hindbrain rhombomeres 3 and 5, and elsewhere; SqKR15 expresses mem-KR in the heart and elsewhere. Photobleaching of KR by intense light in the heart of SqKR15 embryos at lower levels caused a reduction in pumping efficiency of the heart and pericardial edema and at higher levels - in cell death in the hindbrain of SqKR2 and in the heart of SqKR15 embryos.</p> <p>Conclusions</p> <p>An intense illumination of tissues expressing mem-KR affects cell viability and function in living zebrafish embryos. Hence, the zebrafish transgenics expressing mem-KR in a tissue-specific manner are useful tools for studying the biological effects of ROS.</p
    corecore