1,896 research outputs found

    The cusp: a window for particle exchange between the radiation belt and the solar wind

    Get PDF
    International audienceThe study focuses on a single particle dynamics in the cusp region. The topology of the cusp region in terms of magnetic field iso-B contours has been studied using the Tsyganenko 96 model (T96) as an example, to show the importance of an off-equatorial minimum on particle trapping. We carry out test particle simulations to demonstrate the bounce and drift motion. The "cusp trapping limit" concept is introduced to reflect the particle motion in the high latitude magnetospheric region. The spatial distribution of the "cusp trapping limit" shows that only those particles with near 90° pitch-angles can be trapped and drift around the cusp. Those with smaller pitch angles may be partly trapped in the iso-B contours, however, they will eventually escape along one of the magnetic field lines. There exist both open field lines and closed ones within the same drift orbit, indicating two possible destinations of these particles: those particles being lost along open field lines will be connected to the surface of the magnetopause and the solar wind, while those along closed ones will enter the equatorial radiation belt. Thus, it is believed that the cusp region can provide a window for particle exchange between these two regions. Some of the factors, such as dipole tilt angle, magnetospheric convection, IMF and the Birkeland current system, may influence the cusp's trapping capability and therefore affect the particle exchanging mechanism. Their roles are examined by both the analysis of cusp magnetic topology and test particle simulations

    Multiple Triangulation Analysis: another approach to determine the orientation of magnetic flux ropes

    Get PDF
    Another approach (Multiple Triangulation Analysis, MTA) is presented to determine the orientation of magnetic flux rope, based on 4-point measurements. A 2-D flux rope model is used to examine the accuracy of the MTA technique in a theoretical way. It is found that the precision of the estimated orientation is dependent on both the spacecraft separation and the constellation path relative to the flux rope structure. However, the MTA error range can be shown to be smaller than that of the traditional MVA technique. As an application to real Cluster data, several flux rope events on 26 January 2001 are analyzed using MTA, to obtain their orientations. The results are compared with the ones obtained by several other methods which also yield flux rope orientation. The estimated axis orientations are shown to be fairly close, suggesting the reliability of the MTA method

    Consistent response of Indian summer monsoon to Middle East dust in observations and simulations

    Get PDF
    The response of the Indian summer monsoon (ISM) circulation and precipitation to Middle East dust aerosols on sub-seasonal timescales is studied using observations and the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem). Satellite data show that the ISM rainfall in coastal southwest India, central and northern India, and Pakistan is closely associated with the Middle East dust aerosols. The physical mechanism behind this dust–ISM rainfall connection is examined through ensemble simulations with and without dust emissions. Each ensemble includes 16 members with various physical and chemical schemes to consider the model uncertainties in parameterizing short-wave radiation, the planetary boundary layer, and aerosol chemical mixing rules. Experiments show that dust aerosols increase rainfall by about 0.44 mm day−1 (~10 % of the climatology) in coastal southwest India, central and northern India, and north Pakistan, a pattern consistent with the observed relationship. The ensemble mean rainfall response over India shows a much stronger spatial correlation with the observed rainfall response than any other ensemble members. The largest modeling uncertainties are from the boundary layer schemes, followed by short-wave radiation schemes. In WRF-Chem, the dust aerosol optical depth (AOD) over the Middle East shows the strongest correlation with the ISM rainfall response when dust AOD leads rainfall response by about 11 days. Further analyses show that increased ISM rainfall is related to enhanced southwesterly monsoon flow and moisture transport from the Arabian Sea to the Indian subcontinent, which are associated with the development of an anomalous low-pressure system over the Arabian Sea, the southern Arabian Peninsula, and the Iranian Plateau due to dust-induced heating in the troposphere. The dust-induced heating in the mid-upper troposphere is mainly located in the Iranian Plateau rather than the Tibetan Plateau. This study demonstrates a thermodynamic mechanism that links remote desert dust emissions in the Middle East to ISM circulation and precipitation variability on sub-seasonal timescales, which may have implications for ISM rainfall forecasts

    Energetic ion injection and formation of the storm-time symmetric ring current

    Get PDF
    An extensive study of ring current injection and intensification of the storm-time ring current is conducted with three-dimensional (3-D) test particle trajectory calculations (TPTCs). The TPTCs reveal more accurately the process of ring current injection, with the main results being the following: (1) an intense convection electric field can effectively energize and inject plasma sheet particles into the ring current region within 1–3 h. (2) Injected ions often follow chaotic trajectories in non-adiabatic regions, which may have implications in storm and ring current physics. (3) The shielding electric field, which arises as a consequence of enhanced convection and co-exists with the injection and convection electric field, may cause the original open trajectories of injected ions with higher energy to change into closed ones, thus playing a role in the formation of the symmetric ring current

    Exact solution of gyration radius of individual's trajectory for a simplified human mobility model

    Full text link
    Gyration radius of individual's trajectory plays a key role in quantifying human mobility patterns. Of particular interests, empirical analyses suggest that the growth of gyration radius is slow versus time except the very early stage and may eventually arrive to a steady value. However, up to now, the underlying mechanism leading to such a possibly steady value has not been well understood. In this Letter, we propose a simplified human mobility model to simulate individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that individual has constant travel speed and inferior limit of time at home and work, we prove that the daily moving area of an individual is an ellipse, and finally get an exact solution of the gyration radius. The analytical solution well captures the empirical observation reported in [M. C. Gonz`alez et al., Nature, 453 (2008) 779]. We also find that, in spite of the heterogeneous displacement distribution in the population level, individuals in our model have characteristic displacements, indicating a completely different mechanism to the one proposed by Song et al. [Nat. Phys. 6 (2010) 818].Comment: 4 pages, 4 figure

    Plasma Sheet Pressure Variations in the Near‐Earth Magnetotail During Substorm Growth Phase: THEMIS Observations

    Full text link
    We investigate the plasma sheet pressure variations in the near‐Earth magnetotail (radius distance, R, from 7.5 RE to 12 RE and magnetic local time, MLT, from 18:00 to 06:00) during substorm growth phase with Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. It is found that, during the substorm growth phase, about 39.4% (76/193) of the selected events display a phenomenon of equatorial plasma pressure (Peq) decrease. The occurrence rates of Peq decrease cases are higher in the dawn (04:00 to 06:00) and dusk (18:00 to 20:00) flanks (> 50%) than in the midnight region (20:00 to 04:00,  −16%). The mean value of Peq increase percentages at the end of substorm growth phase is the highest (~ 40%) in the premidnight MLT bin (22:00 to 00:00) and is almost unchanged in the dawn and dusk flanks. Further investigations show that 13.0% of the events have more than 10% of Peq decrease at the end of substorm growth phase comparing to the value before the growth phase, and ~ 28.0% of the events have small changes (< 10%), and ~ 59.0% events have a more than 10% increase. This study also reveals the importance of electron pressure (Pe) in the variation of Peq in the substorm growth phase. The Pe variations often account for more than 50% of the Peq changes, and the ratios of Pe to ion pressure often display large variations (~ 50%). Among the investigated events, during the growth phase, an enhanced equatorial plasma convection flow is observed, which diverges in the midnight tail region and propagates azimuthally toward the dayside magnetosphere with velocity of ~ 20 km/s. It is proposed that the Peq decreases in the near‐Earth plasma sheet during the substorm growth phase may be due to the transport of closed magnetic flux toward the dayside magnetosphere driven by dayside magnetopause reconnection. Both solar wind and ionospheric conductivity effects may influence the distributions of occurrence rates for Peq decrease events and the Peq increase percentages in the investigated region.Key PointsAbout 40% of the selected events in the near‐tail region display a phenomenon of equatorial plasma pressure decreaseAn enhanced equatorial convection with speed of ~ 20 km/s is observed in our cases during the substorm growth phaseStatistical studies for the distributions of Peq properties and electron pressure variations are performedPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141851/1/jgra53963.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141851/2/jgra53963_am.pd

    Electron Dispersion and Parallel Electron Beam Observed Near the Separatrix

    Get PDF
    The separatrix region is the region between the separatrix and the reconnection jet. Due to the E×B drift and velocity filter effect in which high‐energy particles with high parallel speed can be seen prior to low‐energy particles along the field line, electrons are separated from ions. The electron dynamics in this region is of interest; however it has not been studied in detail, because of the insufficient resolution of plasma data. We present a slow separatrix crossing event observed by Magnetospheric Multiscale (MMS) satellite constellation on 1 January 2016, from the magnetosheath side with high‐resolution burst mode data. The electron edge and ion edge are clearly distinguished in the separatrix region. Two types of electron dispersion, one with a short duration (~0.3 s) and the other with a longer duration (~13 s) were detected between the electron and ion edges. The rapid dispersion (with small time scale) is mainly in the parallel direction, which might originate from a thin layer with non‐frozen‐in electrons close to the separatrix. The gradual (long time scale) dispersion is seen from parallel to perpendicular directions, which comes from the E×B drift of a curved D‐shape distribution of electrons. The width of the electron diffusion region on the magnetosheath side is estimated based on MMS observation. The observation also reveals an unexpected parallel electron beam outside of the electron edge. Wave‐particle interaction or parallel potential in the inflow region may be responsible for the generation of this electron population

    Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail

    Get PDF
    Abstract We present in situ observations of a shock-induced substorm-like event on 13 April 2013 observed by the newly launched Van Allen twin probes. Substorm-like electron injections with energy of 30-500 keV were observed in the region from L∼5.2 to 5.5 immediately after the shock arrival (followed by energetic electron drift echoes). Meanwhile, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 150 s emerged following the magnetotail magnetic field reconfiguration after the interplanetary (IP) shock passage. The poloidal mode is more intense than the toroidal mode. The 90 phase shift between the poloidal mode Br and Ea suggests the standing poloidal waves in the Northern Hemisphere. Furthermore, the energetic electron flux modulations indicate that the azimuthal wave number is ∼14. Direct evidence of drift resonance between the injected electrons and the excited poloidal ULF wave has been obtained. The resonant energy is estimated to be between 150 keV and 230 keV. Two possible scenaria on ULF wave triggering are discussed: vortex-like flow structure-driven field line resonance and ULF wave growth through drift resonance. It is found that the IP shock may trigger intense ULF wave and energetic electron behavior at L∼3 to 6 on the nightside, while the time profile of the wave is different from dayside cases
    corecore