7 research outputs found

    Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo

    Get PDF
    Aims/hypothesis Chronic low-grade inflammation with local upregulation of proinflammatory molecules plays a role in the progression of obesity-related renal injury. Reduced serum concentration of anti-inflammatory adiponectin may promote chronic inflammation. Here, we investigated the potential anti-inflammatory and renoprotective effects and mechanisms of action of AdipoRon, an adiponectin receptor agonist. Methods Wild-type DBA/2J mice were fed with high-fat diet (HFD) supplemented or not with AdipoRon to model obesity-induced metabolic endotoxaemia and chronic low-grade inflammation and we assessed changes in the glomerular morphology and expression of proinflammatory markers. We also treated human glomeruli ex vivo and human podocytes in vitro with AdipoRon and bacterial lipopolysaccharide (LPS), an endotoxin upregulated in obesity and diabetes, and analysed the secretion of inflammatory cytokines, activation of inflammatory signal transduction pathways, apoptosis and migration. Results In HFD-fed mice, AdipoRon attenuated renal inflammation, as demonstrated by reduced expression of glomerular activated NF-kappa B p65 subunit (NF-kappa B-p65) (70%, p < 0.001), TNF alpha (48%, p < 0.01), IL-1 beta (51%, p < 0.001) and TGF beta (46%, p < 0.001), renal IL-6 and IL-4 (21% and 20%, p < 0.05), and lowered glomerular F4/80-positive macrophage infiltration (31%, p < 0.001). In addition, AdipoRon ameliorated HFD-induced glomerular hypertrophy (12%, p < 0.001), fibronectin accumulation (50%, p < 0.01) and podocyte loss (12%, p < 0.001), and reduced podocyte foot process effacement (15%, p < 0.001) and thickening of the glomerular basement membrane (18%, p < 0.001). In cultured podocytes, AdipoRon attenuated the LPS-induced activation of the central inflammatory signalling pathways NF-kappa B-p65, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38-MAPK) (30%, 36% and 22%, respectively, p < 0.001), reduced the secretion of TNF alpha (32%, p < 0.01), and protected against podocyte apoptosis and migration. In human glomeruli ex vivo, AdipoRon reduced the LPS-induced secretion of inflammatory cytokines IL-1 beta, IL-18, IL-6 and IL-10. Conclusions/interpretation AdipoRon attenuated the renal expression of proinflammatory cytokines in HFD-fed mice and LPS-stimulated human glomeruli, which apparently contributed to the amelioration of glomerular inflammation and injury. Mechanistically, based on assays on cultured podocytes, AdipoRon reduced LPS-induced activation of the NF-kappa B-p65, JNK and p38-MAPK pathways, thereby impelling the decrease in apoptosis, migration and secretion of TNF alpha. We conclude that the activation of the adiponectin receptor by AdipoRon is a potent strategy to attenuate endotoxaemia-associated renal inflammation.Peer reviewe

    Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2

    No full text
    This protocol describes a method to obtain spatially resolved proteomic maps of specific compartments within living mammalian cells. An engineered peroxidase, APEX2, is genetically targeted to a cellular region of interest. Upon the addition of hydrogen peroxide for 1 min to cells preloaded with a biotin-phenol substrate, APEX2 generates biotin-phenoxyl radicals that covalently tag proximal endogenous proteins. Cells are then lysed, and biotinylated proteins are enriched with streptavidin beads and identified by mass spectrometry. We describe the generation of an appropriate APEX2 fusion construct, proteomic sample preparation, and mass spectrometric data acquisition and analysis. A two-state stable isotope labeling by amino acids in cell culture (SILAC) protocol is used for proteomic mapping of membrane-enclosed cellular compartments from which APEX2-generated biotin-phenoxyl radicals cannot escape. For mapping of open cellular regions, we instead use a 'ratiometric' three-state SILAC protocol for high spatial specificity. Isotopic labeling of proteins takes 5–7 cell doublings. Generation of the biotinylated proteomic sample takes 1 d, acquiring the mass spectrometric data takes 2–5 d and analysis of the data to obtain the final proteomic list takes 1 week.National Science Foundation (U.S.) (NSF Graduate Research Fellowship)United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship)National Institutes of Health (U.S.) ((NIH R01 CA186568)Howard Hughes Medical Institute (Collaborative Initiative Award

    New roles for mitochondrial proteases in health, ageing and disease

    No full text

    The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease

    No full text
    corecore