420 research outputs found
Is there a vortex-glass transition in high-temperature superconductors?
We show that DC voltage versus current measurements of a YBCO micro-bridge in
a magnetic field can be collapsed onto scaling functions proposed by Fisher,
Fisher, and Huse, as is widely reported in the literature. We find, however,
that good data collapse is achieved for a wide range of critical exponents and
temperatures. These results strongly suggest that agreement with scaling alone
does not prove the existence of a phase transition. We propose a criterion to
determine if the data collapse is valid, and thus if a phase transition occurs.
To our knowledge, none of the data reported in the literature meet our
criterion.Comment: 4 pages, 4 figure
Chrobak Normal Form Revisited, with Applications
Abstract. It is well known that any nondeterministic finite automata over a unary alphabet can be represented in a certain normal form called the Chrobak normal form [1]. We present a very simple conversion pro-cedure working in O(n3) time. Then we extend the algorithm to improve two trade-offs concerning conversions between different representations of unary regular languages. Given an n-state NFA, we are able to find a regular expression of size O ( n2 logn) describing the same language (which improves the previously known O(n2) size bound [8]) and a context-free grammar in Chomsky normal form with O(√n logn) nonterminals (which improves the previously known O(n2/3) bound [3]). As a byproduct of our conversion procedure, we get an alternative proof of the Chrobak normal form theorem. We believe that its efficiency and simplicity make the effort of reproving an already known result worth-while. Key-words: unary automata, descriptional complexity
Cyclin E and CDK2 Repress the Terminal Differentiation of Quiescent Cells after Asymmetric Division in C. elegans
Coordination between cell proliferation and differentiation is important in normal development and oncogenesis. These processes usually have an antagonistic relationship, in that differentiation is blocked in proliferative cells, and terminally differentiated cells do not divide. In some instances, cyclins, cyclin-dependent kinases (CDKs) and their inhibitors (CKIs) play important roles in this antagonistic regulation. However, it is unknown whether CKIs and cyclin/CDKs regulate the uncommitted state in quiescent cells where CDK activities are likely to be low. Here, we show in C. elegans that cye-1/cyclin E and cdk-2/CDK2 repress terminal differentiation in quiescent cells. In cye-1 mutants and cdk-2(RNAi) animals, after asymmetric division, certain quiescent cells adopted their sister cells' phenotype and differentiated at some frequency. In contrast, in cki-1(RNAi) animals, these cells underwent extra divisions, while, in cki-1(RNAi); cdk-2(RNAi) or cki-1(RNAi); cye-1 animals, they remained quiescent or differentiated. Therefore, in wild-type animals, CKI-1/CKI in these cells maintained quiescence by inhibiting CYE-1/CDK-2, while sufficient CYE-1/CDK-2 remained to repress the terminal differentiation. The difference between sister cells is regulated by the Wnt/MAP kinase pathway, which causes asymmetric expression of CYE-1 and CKI-1. Our results suggest that the balance between the levels of CKI and cyclin E determines three distinct cell states: terminally differentiated, quiescent and uncommitted, and proliferating
Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale
Stable and switchable polarization of ferroelectric materials opens a
possibility to electrically control their functional behavior. A particularly
promising approach is to employ ferroelectric tunnel junctions where the
polarization reversal in a ferroelectric barrier changes the tunneling current
across the junction. Here, we demonstrate the reproducible tunneling
electroresistance effect using a combination of Piezoresponse Force Microscopy
(PFM) and Conducting Atomic Force Microscopy (C-AFM) techniques on
nanometer-thick epitaxial BaTiO3 single crystal thin films on SrRuO3 bottom
electrodes. Correlation between ferroelectric and electronic transport
properties is established by the direct nanoscale visualization and control of
polarization and tunneling current in BaTiO3 films. The obtained results show a
change in resistance by about two orders of magnitude upon polarization
reversal on a lateral scale of 20 nm at room temperature. These results are
promising for employing ferroelectric tunnel junctions in non-volatile memory
and logic devices, not involving charge as a state variable.Comment: 18 pages, 4 figure
Josephson effect in d-wave superconductor junctions in a lattice model
Josephson current between two d-wave superconductors is calculated by using a
lattice model. Here we consider two types of junctions, , the parallel
junction and the mirror-type junction. The maximum Josephson current
shows a wide variety of temperature () dependence depending on the
misorientation angles and the types of junctions. When the misorientation
angles are not zero, the Josephson current shows the low-temperature anomaly
because of a zero energy state (ZES) at the interfaces. In the case of
mirror-type junctions, has a non monotonic temperature dependence. These
results are consistent with the previous results based on the quasiclassical
theory. [Y. Tanaka and S. Kashiwaya: Phys. Rev. B \textbf{56} (1997) 892.] On
the other hand, we find that the ZES disappears in several junctions because of
the Freidel oscillations of the wave function, which is peculiar to the lattice
model. In such junctions, the temperature dependence of is close to the
Ambegaokar-Baratoff relation.Comment: 17 pages, 10 figures, using jpsj2.cls and oversite.st
Mechanism of Cancer Cell Death Induced by Depletion of an Essential Replication Regulator
Background: Depletion of replication factors often causes cell death in cancer cells. Depletion of Cdc7, a kinase essential for initiation of DNA replication, induces cancer cell death regardless of its p53 status, but the precise pathways of cell death induction have not been characterized. Methodology/Principal Findings: We have used the recently-developed cell cycle indicator, Fucci, to precisely characterize the cell death process induced by Cdc7 depletion. We have also generated and utilized similar fluorescent cell cycle indicators using fusion with other cell cycle regulators to analyze modes of cell death in live cells in both p53-positive and-negative backgrounds. We show that distinct cell-cycle responses are induced in p53-positive and-negative cells by Cdc7 depletion. p53-negative cells predominantly arrest temporally in G2-phase, accumulating CyclinB1 and other mitotic regulators. Prolonged arrest at G2-phase and abrupt entry into aberrant M-phase in the presence of accumulated CyclinB1 are followed by cell death at the post-mitotic state. Abrogation of cytoplasmic CyclinB1 accumulation partially decreases cell death. The ATR-MK2 pathway is responsible for sequestration of CyclinB1 with 14-3-3s protein. In contrast, p53-positive cancer cells do not accumulate CyclinB1, but appear to die mostly through entry into aberrant S-phase after Cdc7 depletion. The combination of Cdc7 inhibition with known anti-cancer agents significantly stimulates cell death effects in cancer cells in a genotype-dependent manner, providing a strategic basis for future combination therapies
New Trends in Beverage Packaging Systems: A Review
New trends in beverage packaging are focusing on the structure modification of packaging materials and the development of new active and/or intelligent systems, which can interact with the product or its environment, improving the conservation of beverages, such as wine, juice or beer, customer acceptability, and food security. In this paper, the main nutritional and organoleptic degradation processes of beverages, such as oxidative degradation or changes in the aromatic profiles, which influence their color and volatile composition are summarized. Finally, the description of the current situation of beverage packaging materials and new possible, emerging strategies to overcome some of the pending issues are discussed
The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses
BACKGROUND: Histone deacetylase inhibitors (HDACIs) induce hyperacetylation of core histones modulating chromatin structure and affecting gene expression. These compounds are also able to induce growth arrest, cell differentiation, and apoptotic cell death of tumor cells in vitro as well as in vivo. Even though several genes modulated by HDAC inhibition have been identified, those genes clearly responsible for the biological effects of these drugs have remained elusive. We investigated the pharmacological effect of the HDACI and potential anti-cancer agent Trichostatin A (TSA) on primary T cells. METHODS: To ascertain the effect of TSA on resting and activated T cells we used a model system where an enriched cell population consisting of primary T-cells was stimulated in vitro with immobilized anti-CD3/anti-CD28 antibodies whilst exposed to pharmacological concentrations of Trichostatin A. RESULTS: We found that this drug causes a rapid decline in cytokine expression, accumulation of cells in the G(1 )phase of the cell cycle, and induces apoptotic cell death. The mitochondrial respiratory chain (MRC) plays a critical role in the apoptotic response to TSA, as dissipation of mitochondrial membrane potential and reactive oxygen species (ROS) scavengers block TSA-induced T-cell death. Treatment of T cells with TSA results in the altered expression of a subset of genes involved in T cell responses, as assessed by microarray gene expression profiling. We also observed up- as well as down-regulation of various costimulatory/adhesion molecules, such as CD28 and CD154, important for T-cell function. CONCLUSIONS: Taken together, our findings indicate that HDAC inhibitors have an immunomodulatory potential that may contribute to the potency and specificity of these antineoplastic compounds and might be useful in the treatment of autoimmune disorders
- …