80,270 research outputs found
Robust H-infinity sliding mode control for nonlinear stochastic systems with multiple data packet losses
This is the post-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2012 John Wiley & SonsIn this paper, an ∞ sliding mode control (SMC) problem is studied for a class of discrete-time nonlinear stochastic systems with multiple data packet losses. The phenomenon of data packet losses, which is assumed to occur in a random way, is taken into consideration in the process of data transmission through both the state-feedback loop and the measurement output. The probability for the data packet loss for each individual state variable is governed by a corresponding individual random variable satisfying a certain probabilistic distribution over the interval [0 1]. The discrete-time system considered is also subject to norm-bounded parameter uncertainties and external nonlinear disturbances, which enter the system state equation in both matched and unmatched ways. A novel stochastic discrete-time switching function is proposed to facilitate the sliding mode controller design. Sufficient conditions are derived by means of the linear matrix inequality (LMI) approach. It is shown that the system dynamics in the specified sliding surface is exponentially stable in the mean square with a prescribed ∞ noise attenuation level if an LMI with an equality constraint is feasible. A discrete-time SMC controller is designed capable of guaranteeing the discrete-time sliding mode reaching condition of the specified sliding surface with probability 1. Finally, a simulation example is given to show the effectiveness of the proposed method.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant
GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grant 61028008 and the
Alexander von Humboldt Foundation of German
Robust H∞ control of time-varying systems with stochastic non-linearities: the finite-horizon case
The official published version can be obtained from the link below.This paper is concerned with the robust H∞ control problem for the class of uncertain non-linear discrete time-varying stochastic systems with a covariance constraint. All the system parameters are time-varying and the uncertainties enter into the state matrix. The non-linearities under consideration are described by statistical means and they cover several classes of well-studied non-linearities. The purpose of the addressed problem is to design a dynamic output-feedback controller such that, the H∞ disturbance rejection attenuation level is achieved in the finite-horizon case while the state covariance is not more than an individual upper bound at each time point. An algorithm is developed to deal with the addressed problem by means of recursive linear matrix inequalities (RLMIs). It is shown that the robust H∞ control problem is solvable if the series of RLMIs is feasible. An illustrative simulation example is given to show the applicability and effectiveness of the proposed algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
An Adaptive Descriptor Design for Object Recognition in the Wild
Digital images nowadays have various styles of appearance, in the aspects of
color tones, contrast, vignetting, and etc. These 'picture styles' are directly
related to the scene radiance, image pipeline of the camera, and post
processing functions. Due to the complexity and nonlinearity of these causes,
popular gradient-based image descriptors won't be invariant to different
picture styles, which will decline the performance of object recognition. Given
that images shared online or created by individual users are taken with a wide
range of devices and may be processed by various post processing functions, to
find a robust object recognition system is useful and challenging. In this
paper, we present the first study on the influence of picture styles for object
recognition, and propose an adaptive approach based on the kernel view of
gradient descriptors and multiple kernel learning, without estimating or
specifying the styles of images used in training and testing. We conduct
experiments on Domain Adaptation data set and Oxford Flower data set. The
experiments also include several variants of the flower data set by processing
the images with popular photo effects. The results demonstrate that our
proposed method improve from standard descriptors in all cases.Comment: 8 page
Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements
The official published version of the article can be found at the link below.This paper is concerned with the robust filtering problem for a class of nonlinear stochastic systems with missing measurements and parameter uncertainties. The missing measurements are described by a binary switching sequence satisfying a conditional probability distribution, and the nonlinearities are expressed by the statistical means. The purpose of the filtering problem is to design a filter such that, for all admissible uncertainties and possible measurements missing, the dynamics of the filtering error is exponentially mean-square stable, and the individual steady-state error variance is not more than prescribed upper bound. A sufficient condition for the exponential mean-square stability of the filtering error system is first derived and an upper bound of the state estimation error variance is then obtained. In terms of certain linear matrix inequalities (LMIs), the solvability of the addressed problem is discussed and the explicit expression of the desired filters is also parameterized. Finally, a simulation example is provided to demonstrate the effectiveness and applicability of the proposed design approach.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK and the Alexander von Humboldt Foundation of Germany
- …
