132 research outputs found

    The robustness of equilibria on convex solids

    Get PDF
    We examine the minimal magnitude of perturbations necessary to change the number NN of static equilibrium points of a convex solid KK. We call the normalized volume of the minimally necessary truncation robustness and we seek shapes with maximal robustness for fixed values of NN. While the upward robustness (referring to the increase of NN) of smooth, homogeneous convex solids is known to be zero, little is known about their downward robustness. The difficulty of the latter problem is related to the coupling (via integrals) between the geometry of the hull \bd K and the location of the center of gravity GG. Here we first investigate two simpler, decoupled problems by examining truncations of \bd K with GG fixed, and displacements of GG with \bd K fixed, leading to the concept of external \rm and internal \rm robustness, respectively. In dimension 2, we find that for any fixed number N=2SN=2S, the convex solids with both maximal external and maximal internal robustness are regular SS-gons. Based on this result we conjecture that regular polygons have maximal downward robustness also in the original, coupled problem. We also show that in the decoupled problems, 3-dimensional regular polyhedra have maximal internal robustness, however, only under additional constraints. Finally, we prove results for the full problem in case of 3 dimensional solids. These results appear to explain why monostatic pebbles (with either one stable, or one unstable point of equilibrium) are found so rarely in Nature.Comment: 20 pages, 6 figure

    Magnetic noise spectrum measurement by an atom laser in gravity

    Get PDF
    Bose-Einstein condensates of ultracold atoms can be used to sense fluctuations of the magnetic field by means of transitions into untrapped hyperfine states. It has been shown recently that counting the outcoupled atoms can yield the power spectrum of the magnetic noise. We calculate the spectral resolution function which characterizes the condensate as a noise measurement device in this scheme. We use the description of the radio-frequency outcoupling scheme of an atom laser which takes into account the gravitational acceleration. Employing both an intuitive and the exact three-dimensional and fully quantum mechanical approach we derive the position-dependent spectral resolution function for condensates of different size and shape

    Parametric amplification of the mechanical vibrations of a suspended nanowire by magnetic coupling to a Bose-Einstein condensate

    Get PDF
    We consider the possibility of parametric amplification of a mechanical vibration mode of a nanowire due to its interaction with a Bose-Einstein condensate (BEC) of ultracold atoms. The magneto-mechanical coupling is mediated by the vibrationally modulated magnetic field around the current-carrying nanowire, which can induce atomic transitions between different hyperfine sublevels. We theoretically analyze the limitations arising from the fact that the spin inverted atomic medium which feeds the mechanical oscillation has a finite bandwidth in the range of the chemical potential of the condensate

    Magnetic-noise-spectrum measurement by an atom laser in gravity

    Full text link

    Electroweak instantons as a solution to the ultrahigh energy cosmic ray puzzle

    Get PDF
    We propose a scenario in which a simple power-like primary spectrum for protons with sources at cosmological distances leads to a quantitative description of all the details of the observed cosmic ray spectrum for energies from 10^{17} eV to 10^{21} eV. As usual, the ultrahigh energy protons with energies above E_{GZK} ~ 4 x 10^{19} eV loose a large fraction of their energies by the photoproduction of pions on the cosmic microwave background, which finally decay mainly into neutrinos. In our scenario, these so-called cosmogenic neutrinos interact with nucleons in the atmosphere through Standard Model electroweak instanton-induced processes and produce air showers which are hardly distinguishable from ordinary hadron-initiated air showers. In this way, they give rise to a second contribution to the observed cosmic ray spectrum -- in addition to the one from above mentioned protons -- which reaches beyond E_{GZK}. Since the whole observed spectrum is uniquely determined by a single primary injection spectrum, no fine tuning is needed to fix the ratio of the spectra below and above E_{GZK}. The statistical analysis shows an excellent goodness of this scenario. Possible tests of it range from observations at cosmic ray facilities and neutrino telescopes to searches for QCD instanton-induced processes at HERA.Comment: 14 pages, 7 figure

    Dynamical Chiral Symmetry Breaking on the Light Front.II. The Nambu--Jona-Lasinio Model

    Full text link
    An investigation of dynamical chiral symmetry breaking on the light front is made in the Nambu--Jona-Lasinio model with one flavor and N colors. Analysis of the model suffers from extraordinary complexity due to the existence of a "fermionic constraint," i.e., a constraint equation for the bad spinor component. However, to solve this constraint is of special importance. In classical theory, we can exactly solve it and then explicitly check the property of ``light-front chiral transformation.'' In quantum theory, we introduce a bilocal formulation to solve the fermionic constraint by the 1/N expansion. Systematic 1/N expansion of the fermion bilocal operator is realized by the boson expansion method. The leading (bilocal) fermionic constraint becomes a gap equation for a chiral condensate and thus if we choose a nontrivial solution of the gap equation, we are in the broken phase. As a result of the nonzero chiral condensate, we find unusual chiral transformation of fields and nonvanishing of the light-front chiral charge. A leading order eigenvalue equation for a single bosonic state is equivalent to a leading order fermion-antifermion bound-state equation. We analytically solve it for scalar and pseudoscalar mesons and obtain their light-cone wavefunctions and masses. All of the results are entirely consistent with those of our previous analysis on the chiral Yukawa model.Comment: 23 pages, REVTEX, the version to be published in Phys.Rev.D; Some clarifications in discussion of the LC wavefunctions adde

    Determinisitic Optical Fock State Generation

    Get PDF
    We present a scheme for the deterministic generation of N-photon Fock states from N three-level atoms in a high-finesse optical cavity. The method applies an external laser pulsethat generates an NN-photon output state while adiabatically keeping the atom-cavity system within a subspace of optically dark states. We present analytical estimates of the error due to amplitude leakage from these dark states for general N, and compare it with explicit results of numerical simulations for N \leq 5. The method is shown to provide a robust source of N-photon states under a variety of experimental conditions and is suitable for experimental implementation using a cloud of cold atoms magnetically trapped in a cavity. The resulting N-photon states have potential applications in fundamental studies of non-classical states and in quantum information processing.Comment: 25 pages, 9 figure

    Clustering in Highest Energy Cosmic Rays: Physics or Statistics?

    Full text link
    Directional clustering can be expected in cosmic ray observations due to purely statistical fluctuations for sources distributed randomly in the sky. We develop an analytic approach to estimate the probability of random cluster configurations, and use these results to study the strong potential of the HiRes, Auger, Telescope Array and EUSO/OWL/AirWatch facilities for deciding whether any observed clustering is most likely due to non-random sources.Comment: 19 pages, LaTeX, 3 figure

    Extensive air showers with TeV-scale quantum gravity

    Get PDF
    One of the possible consequences of the existence of extra degrees of freedom beyond the electroweak scale is the increase of neutrino-nucleon cross sections (σνN\sigma_{\nu N}) beyond Standard Model predictions. At ultra-high energies this may allow the existence of neutrino-initiated extensive air showers. In this paper, we examine the most relevant observables of such showers. Our analysis indicates that the future Pierre Auger Observatory could be potentially powerful in probing models with large compact dimensions.Comment: 7 pages revtex, 5 eps fig
    corecore