3,322 research outputs found

    Experimental study on a metal hydride based hydrogen compressor

    Get PDF
    This is the post-print version of the final paper published in Journal of Alloys and Compounds. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.A three-stage metal hydride based hydrogen compressor prototype was built. It has been designed for a hydrogen production facility using a low-pressure alkaline electrolyser. The compression system should transfer heat recovered from the electrolyser into the hydride beds to allow hydrogen desorption flow. The three-stage compressor achieves a compression ratio of 20:1 atm. It performs a thermal cycling of three AB5 hydrides between 20 and 80 °C. Its flow rate, for 25 g of each hydride bed, reaches about 20 l (NTP) of hydrogen per hour. The prototype is now operational. Some improvements in the heat transfer management system are also carried out before proceeding to the interconnection with the electrolyser and to the extent that the hydrogen produced satisfies the high purity requirement of the hydrides used in the compressor.Natural Resources Canada(NRCan), Ministère des Ressources Naturelles et de la Faune du Québec (MRNF), and Natural Sciences and Engineering Research Council of Canada

    Nonperturbative structure of the quark-gluon vertex

    Get PDF
    The complete tensor structure of the quark--gluon vertex in Landau gauge is determined at two kinematical points (`asymmetric' and `symmetric') from lattice QCD in the quenched approximation. The simulations are carried out at beta=6.0, using a mean-field improved Sheikholeslami-Wohlert fermion action, with two quark masses ~ 60 and 115 MeV. We find substantial deviations from the abelian form at the asymmetric point. The mass dependence is found to be negligible. At the symmetric point, the form factor related to the chromomagnetic moment is determined and found to contribute significantly to the infrared interaction strength.Comment: 16 pages, 11 figures, JHEP3.cl

    Primordial magnetic fields and the HI signal from the epoch of reionization

    Full text link
    The implication of primordial magnetic-field-induced structure formation for the HI signal from the epoch of reionization is studied. Using semi-analytic models, we compute both the density and ionization inhomogeneities in this scenario. We show that: (a) The global HI signal can only be seen in emission, unlike in the standard Λ\LambdaCDM models, (b) the density perturbations induced by primordial fields, leave distinctive signatures of the magnetic field Jeans' length on the HI two-point correlation function, (c) the length scale of ionization inhomogeneities is \la 1 \rm Mpc. We find that the peak expected signal (two-point correlation function) is ≃10−4K2\simeq 10^{-4} \rm K^2 in the range of scales 0.5-3Mpc0.5\hbox{-}3 \rm Mpc for magnetic field strength in the range 5×10−10-3×10−9G5 \times 10^{-10} \hbox{-}3 \times 10^{-9} \rm G. We also discuss the detectability of the HI signal. The angular resolution of the on-going and planned radio interferometers allows one to probe only the largest magnetic field strengths that we consider. They have the sensitivity to detect the magnetic field-induced features. We show that thefuture SKA has both the angular resolution and the sensitivity to detect the magnetic field-induced signal in the entire range of magnetic field values we consider, in an integration time of one week.Comment: 19 pages, 5 figures, to appear in JCA

    Specification and Verification of Media Constraints using UPPAAL

    Get PDF
    We present the formal specification and verification of a multimedia stream. The stream is described in a timed automata notation. We verify that the stream satisfies certain quality of service properties, in particular, throughput and end-to-end latency. The verification tool used is the real-time model checker UPPAAL

    NASA Constellation Distributed Simulation Middleware Trade Study

    Get PDF
    This paper presents the results of a trade study designed to assess three distributed simulation middleware technologies for support of the NASA Constellation Distributed Space Exploration Simulation (DSES) project and Test and Verification Distributed System Integration Laboratory (DSIL). The technologies are the High Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and an XML-based variant of Distributed Interactive Simulation (DIS-XML) coupled with the Extensible Messaging and Presence Protocol (XMPP). According to the criteria and weights determined in this study, HLA scores better than the other two for DSES as well as the DSIL

    An Overview of the Distributed Space Exploration Simulation (DSES) Project

    Get PDF
    This paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which investigates technologies, and processes related to integrated, distributed simulation of complex space systems in support of NASA's Exploration Initiative. In particular, it describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. With regard to network infrastructure, DSES is developing a Distributed Simulation Network for use by all NASA centers. With regard to software, DSES is developing software models, tools and procedures that streamline distributed simulation development and provide an interoperable infrastructure for agency-wide integrated simulation. Finally, with regard to simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper presents the current status and plans for these three areas, including examples of specific simulations

    The Distributed Space Exploration Simulation (DSES)

    Get PDF
    The paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which focuses on the investigation and development of technologies, processes and integrated simulations related to the collaborative distributed simulation of complex space systems in support of NASA's Exploration Initiative. This paper describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. In the network work area, DSES is developing a Distributed Simulation Network that will provide agency wide support for distributed simulation between all NASA centers. In the software work area, DSES is developing a collection of software models, tool and procedures that ease the burden of developing distributed simulations and provides a consistent interoperability infrastructure for agency wide participation in integrated simulation. Finally, for simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper will present current status and plans for each of these work areas with specific examples of simulations that support NASA's exploration initiatives

    Measuring Dust Attenuation Curves of SINGS/KINGFISH Galaxies Using Swift/UVOT Photometry

    Full text link
    We present Swift/Ultraviolet Optical Telescope (UVOT) integrated light photometry of the Spitzer Infrared Nearby Galaxies Survey (SINGS) and the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) samples of nearby galaxies. Combining the Swift/UVOT data with archival photometry, we investigate a variety of dust attenuation curves derived using MCSED, a flexible spectral energy distribution fitting code. We fit the panchromatic data using three different star formation history (SFH) parameterizations: a decaying exponential, a double power law, and a piecewise function with breaks at physically motivated ages. We find that the average attenuation law of the sample changes slightly based on the SFH assumed. Specifically, the exponential SFH leads to the shallowest attenuation curves. Using simulated data, we also find the exponential SFH fails to outperform the more complex SFHs. Finally, we find a systematic offset in the derived bump strength between SED fits with and without UVOT data, where the inclusion of UVOT data leads to smaller bump strengths, highlighting the importance of the UVOT data. This discrepancy is not seen in fits to mock photometry. Understanding dust attenuation in the local universe is key to understanding high redshift objects where rest-frame far-infrared data is unavailable.Comment: 30 pages, 13 figures, accepted for publication in Ap
    • …
    corecore