1,574 research outputs found

    Dynamic update of shortest path tree in OSPF

    Get PDF
    2003-2004 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Is a 20 Kg Load Sufficient to Simulate Fatigue in Squat Jumps?

    Get PDF
    Abstract available in the Annual Coaches and Sport Science College

    Notch Signaling Activation Promotes Seizure Activity in Temporal Lobe Epilepsy

    No full text
    Notch signaling in the nervous system is often regarded as a developmental pathway. However, recent studies have suggested that Notch is associated with neuronal discharges. Here, focusing on temporal lobe epilepsy, we found that Notch signaling was activated in the kainic acid (KA)-induced epilepsy model and in human epileptogenic tissues. Using an acute model of seizures, we showed that DAPT, an inhibitor of Notch, inhibited ictal activity. In contrast, pretreatment with exogenous Jagged1 to elevate Notch signaling before KA application had proconvulsant effects. In vivo, we demonstrated that the impacts of activated Notch signaling on seizures can in part be attributed to the regulatory role of Notch signaling on excitatory synaptic activity in CA1 pyramidal neurons. In vitro, we found that DAPT treatment impaired synaptic vesicle endocytosis in cultured hippocampal neurons. Taken together, our findings suggest a correlation between aberrant Notch signaling and epileptic seizures. Notch signaling is up-regulated in response to seizure activity, and its activation further promotes neuronal excitation of CA1 pyramidal neurons in acute seizures

    Quasiparticle Liquid in the Highly Overdoped Bi2212

    Full text link
    We present results from the study of a highly overdoped (OD) Bi2212 with a Tc=51T_{c}=51K using high resolution angle-resolved photoemission spectroscopy. The temperature dependent spectra near the (π,0\pi,0) point show the presence of the sharp peak well above TcT_{c}. From the nodal direction, we make comparison of the self-energy with the optimally doped and underdoped cuprates, and the Mo(110) surface state. We show that this OD cuprate appears to have properties that approach that of the Mo. Further analysis shows that the OD has a more kk-independent lineshape at the Fermi surface than the lower-doped cuprates. This allows for a realistic comparison of the nodal lifetime values to the experimental resistivity measurements via Boltzmann transport formulation. All these observations point to the validity of the quasiparticle picture for the OD even in the normal state within a certain energy and momentum range.Comment: 4 pages, 4 figure

    Peptide substrate identification for yeast Hsp40 Ydj1 by screening the phage display library

    Get PDF
    We have identified a peptide substrate for molecular chaperone Hsp40 Ydj1 by utilizing the combination of phage display library screening and isothemol titration calirimetry (ITC). The initial peptide substrate screening for Hsp40 Ydj1 has been carried out by utilizing a 7-mer phage display library. The peptide sequences from the bio-panning were synthesized and object to the direct affinity measurement for Hsp40 Ydj1 by isothemol titration calirimetry studies. The peptide which has the measurable affinity with Ydj1 shows enriched hydrophobic residues in the middle of the substrate fragment. The peptide substrate specificity for molecular chaperone Hsp40 has been analyzed

    Kernel based methods for accelerated failure time model with ultra-high dimensional data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most genomic data have ultra-high dimensions with more than 10,000 genes (probes). Regularization methods with <it>L</it><sub>1 </sub>and <it>L<sub>p </sub></it>penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size <it>n </it>≪ <it>m </it>(the number of genes), directly identifying a small subset of genes from ultra-high (<it>m </it>> 10, 000) dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds) of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes.</p> <p>Results</p> <p>The accelerated failure time (AFT) model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller <it>n </it>× <it>n </it>matrix. It is very efficient when the number of unknown variables (genes) is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited.</p> <p>Conclusions</p> <p>Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.</p

    Aharonov-Anandan Effect Induced by Spin-Orbit Interaction and Charge-Density-Waves in Mesoscopic Rings

    Full text link
    We study the spin-dependent geometric phase effect in mesoscopic rings of charge-density-wave(CDW) materials. When electron spin is explicitly taken into account, we show that the spin-dependent Aharonov-Casher phase can have a pronounced frustration effects on such CDW materials with appropriate electron filling. We show that this frustration has observable consequences for transport experiment. We identify a phase transition from a Peierls insulator to metal, which is induced by spin-dependent phase interference effects. Mesoscopic CDW materials and spin-dependent geometric phase effects, and their interplay, are becoming attractive opportunities for exploitation with the rapid development of modern fabrication technology.Comment: 5 pages, 6 figures, to appear in Phys.Rev.B(Aug.15, 1998
    corecore