409 research outputs found
Turner syndrome and associated problems in turkish children: A multicenter study
Objective: Turner syndrome (TS) is a chromosomal disorder caused by complete or partial X chromosome monosomy that manifests various clinical features depending on the karyotype and on the genetic background of affected girls. This study aimed to systematically investigate the key clinical features of TS in relationship to karyotype in a large pediatric Turkish patient population. Methods: Our retrospective study included 842 karyotype-proven TS patients aged 0-18 years who were evaluated in 35 different centers in Turkey in the years 2013-2014. Results: The most common karyotype was 45,X (50.7%), followed by 45,X/46,XX (10.8%), 46,X,i(Xq) (10.1%) and 45,X/46,X,i(Xq) (9.5%). Mean age at diagnosis was 10.2±4.4 years. The most common presenting complaints were short stature and delayed puberty. Among patients diagnosed before age one year, the ratio of karyotype 45,X was significantly higher than that of other karyotype groups. Cardiac defects (bicuspid aortic valve, coarctation of the aorta and aortic stenosi) were the most common congenital anomalies, occurring in 25% of the TS cases. This was followed by urinary system anomalies (horseshoe kidney, double collector duct system and renal rotation) detected in 16.3%. Hashimoto’s thyroiditis was found in 11.1% of patients, gastrointestinal abnormalities in 8.9%, ear nose and throat problems in 22.6%, dermatologic problems in 21.8% and osteoporosis in 15.3%. Learning difficulties and/or psychosocial problems were encountered in 39.1%. Insulin resistance and impaired fasting glucose were detected in 3.4% and 2.2%, respectively. Dyslipidemia prevalence was 11.4%. Conclusion: This comprehensive study systematically evaluated the largest group of karyotype-proven TS girls to date. The karyotype distribution, congenital anomaly and comorbidity profile closely parallel that from other countries and support the need for close medical surveillance of these complex patients throughout their lifespan. © Journal of Clinical Research in Pediatric Endocrinology
MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive cerebellar, ocular, craniofacial and genital features (COFG syndrome).
BACKGROUND: Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs. OBJECTIVE: A homozygous truncating variant in MAB21L1 has recently been described in a male affected by intellectual disability, scrotal agenesis, ophthalmological anomalies, cerebellar hypoplasia and facial dysmorphism. We employed a combination of exome sequencing and homozygosity mapping to identify the underlying genetic cause in subjects with similar phenotypic features descending from five unrelated consanguineous families. RESULTS: We identified four homozygous MAB21L1 loss of function variants (p.Glu281fs*20, p.Arg287Glufs*14 p.Tyr280* and p.Ser93Serfs*48) and one missense variant (p.Gln233Pro) in 10 affected individuals from 5 consanguineous families with a distinctive autosomal recessive neurodevelopmental syndrome. Cardinal features of this syndrome include a characteristic facial gestalt, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds and scrotum/scrotal agenesis as well as cerebellar hypoplasia with ataxia and variable microcephaly. CONCLUSION: This report defines an ultrarare but clinically recognisable Cerebello-Oculo-Facio-Genital syndrome associated with recessive MAB21L1 variants. Additionally, our findings further support the critical role of MAB21L1 in cerebellum, lens, genitalia and as craniofacial morphogenesis
Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.
Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance
Higher P-Wave Dispersion in Migraine Patients with Higher Number of Attacks
Objective and Aim. An imbalance of the sympathetic system may explain many of the clinical manifestations of the migraine. We aimed to evaluate P-waves as a reveal of sympathetic system function in migraine patients and healthy controls. Materials and Methods. Thirty-five episodic type of migraine patients (complained of migraine during 5 years or more, BMI < 30 kg/m2) and 30 controls were included in our study. We measured P-wave durations (minimum, maximum, and dispersion) from 12-lead ECG recording during pain-free periods. ECGs were transferred to a personal computer via a scanner and then used for magnification of x400 by Adobe Photoshop software. Results. P-wave durations were found to be similar between migraine patients and controls. Although P WD (P-wave dispersion) was similar, the mean value was higher in migraine subjects. P WD was positively correlated with P max (P < 0.01). Attacks number per month and male gender were the factors related to the P WD (P < 0.01). Conclusions. Many previous studies suggested that increased sympathetic activity may cause an increase in P WD. We found that P WD of migraine patients was higher than controls, and P WD was related to attacks number per month and male gender. Further studies are needed to explain the chronic effects of migraine
Formulation, characterisation and flexographic printing of novel Boger fluids to assess the effects of ink elasticity on print uniformity
Model elastic inks were formulated, rheologically characterised in shear and extension, and printed via flexography to assess the impact of ink elasticity on print uniformity. Flexography is a roll-to-roll printing process with great potential in the mass production of printed electronics for which understanding layer uniformity and the influence of rheology is of critical importance. A new set of flexo-printable Boger fluids was formulated by blending polyvinyl alcohol and high molecular weight polyacrylamide to provide inks of varying elasticity. During print trials, the phenomenon of viscous fingering was observed in all prints, with those of the Newtonian ink exhibiting a continuous striping in the printing direction. Increasing elasticity significantly influenced this continuity, disrupting it and leading to a quantifiable decrease in the overall relative size of the printed finger features. As such, ink elasticity was seen to have a profound effect on flexographic printing uniformity, showing the rheological tuning of inks may be a route to obtaining specific printed features
Protective effects of green tea on blood and liver of rats fed with high fructose diet
Abstract This study was designed to investigate the effects of green tea on lipid profile, liver tissue damage, and oxidative stress in rats fed a diet including high fructose. Sprague-Dawley rats were randomly divided into four groups: Control (C), Fructose (F), Green Tea (GT), and F+GT. F and F+GT groups were given 20 fructose in the drinking water for eight weeks. Green tea (2 mg kg−1) was administrated to GT and F+GT groups by oral gavage for eight weeks. Biochemical parameters in serum and oxidative stress markers in the liver were analysed. The liver sections were stained with haematoxylin-eosin. As of the 3rd week of the experiment, the body weight of rats in the F group showed a statistically significant increase in comparison with the F+GT group. The serum glucose and triglyceride levels of the F+GT group significantly decreased when compared with the F group. The fructose-induced degenerative changes in the liver were reduced with green tea. Green tea may serve a protective role against hyperlipidaemia and liver injury in rats fed a high fructose diet
Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases.
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies
On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life
TREATMENT, DISEASE CONTROL, QUALITY OF LIFE AND PSYCHOLOGICAL STATUS IN PATIENTS WITH ANKYLOSING SPONDYLITIS DURING THE COVID-19 PANDEMIC
Introduction. The coronavirus disease (COVID-19) pandemic has the potential to impact disease activity and psychological well-being in people with rheumatic diseases. This study aimed to compare ankylosing spondylitis (AS) patients with and without COVID-19 history in terms of treatment, disease control, quality of life and psychological status by providing a cross-sectional look at treatment, disease control, quality of life and psychological status in patients with AS during the COVID-19 pandemic.
Methods. The study included 74 AS patients, in two groups based on COVID-19 history. Demographic data and clinical characteristics were recorded. Treatment, disease control, functional status, and quality of life were evaluated using Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index (BASFI), and impact of COVID-19 on quality-of-life scales. Psychological status was assessed using the Beck Depression Inventory, Beck Hopelessness Scale, and COVID-19 anxiety scale.
Results. Of the 74 patients diagnosed with AS, 44 were female and 34 were male. The mean age was 47.3 years. In total, 35 patients (47.3%) had COVID-19. We found that the group without COVID-19 had significantly higher levels of hypothyroidism than the other group (p = 0.008). The BASFI value was significantly higher in the COVID-19 group (p = 0.031). The group with COVID-19 had a substantially higher rate of continuing non-anti-rheumatic drug use than the other group (p = 0.02).
Conclusion. During COVID-19 pandemic period, the majority of patients continued their medication, so treatment and disease control were not negatively affected. Having COVID-19 did not cause a significant difference psychologically
- …
