11 research outputs found

    Service Design Case Study: die Einschliessung der Mediathek in Brig in den Tourismus

    Get PDF
    Bei der vorliegenden Bachelorarbeit handelt es sich um eine Case Study, welche im Bereich Service Design durchgeführt wurde. Das touristische Forschungsprojekt fand in Zusammenarbeit mit der Mediathek in Brig, welche sich im schweizerischen Kanton Wallis befindet, statt. Das Ziel der Bachelorarbeit war es, der Möglichkeit einer Einschliessung der Mediathek in den Tourismus auf den Grund zu gehen. Der Autor befasste sich mit der touristischen Attraktivität einer Mediathek und untersuchte, ob eine Mediathek überhaupt Interesse bei den Touristen erwecken kann und welche Massnahmen dafür getroffen werden müssen. Zusätzlich sollte herausgefunden werden, was die Mediathek in Brig unternehmen sollte, um seinen Stammkunden einen touristischen Nutzen zu bieten

    Intracerebral Transplantation and In Vivo Bioluminescence Tracking of Human Neural Progenitor Cells in the Mouse Brain

    Full text link
    Cell therapy has long been an emerging treatment paradigm in experimental neurobiology. However, cell transplantation studies often rely on end-point measurements and can therefore only evaluate longitudinal changes of cell migration and survival to a limited extent. This paper provides a reliable, minimally invasive protocol to transplant and longitudinally track neural progenitor cells (NPCs) in the adult mouse brain. Before transplantation, cells are transduced with a lentiviral vector comprising a bioluminescent (firefly-luciferase) and fluorescent (green fluorescent protein [GFP]) reporter. The NPCs are transplanted into the right cortical hemisphere using stereotaxic injections in the sensorimotor cortex. Following transplantation, grafted cells were detected through the intact skull for up to five weeks (at days 0, 3, 14, 21, 35) with a resolution limit of 6,000 cells using in vivo bioluminescence imaging. Subsequently, the transplanted cells are identified in histological brain sections and further characterized with immunofluorescence. Thus, this protocol provides a valuable tool to transplant, track, quantify, and characterize cells in the mouse brain

    Use and caregiver-reported efficacy of medical cannabis in children and adolescents in Switzerland.

    Get PDF
    Evidence on the use and efficacy of medical cannabis for children is limited. We examined clinical and epidemiological characteristics of medical cannabis treatment and caregiver-reported effects in children and adolescents in Switzerland. We collected clinical data from children and adolescents (< 18 years) who received Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), or a combination of the two between 2008 and 2019 in Switzerland. Out of 205 contacted families, 90 agreed to participate. The median age at the first prescription was 11.5 years (interquartile range (IQR) 6-16), and 32 patients were female (36%). Fifty-one (57%) patients received CBD only and 39 (43%) THC. Patients were more likely to receive THC therapy if one of the following symptoms or signs were present: spasticity, pain, lack of weight gain, vomiting, or nausea, whereas seizures were the dominant indication for CBD therapy. Improvements were reported in 59 (66%) study participants. The largest treatment effects were reported for pain, spasticity, and frequency of seizures in participants treated with THC, and for those treated with pure CBD, the frequency of seizures. However, 43% of caregivers reported treatment interruptions, mainly because of lack of improvement (56%), side effects (46%), the need for a gastric tube (44%), and cost considerations (23%).Conclusions: The effects of medical cannabis in children and adolescents with chronic conditions are unknown except for rare seizure disorders, but the caregiver-reported data analysed here may justify trials of medical cannabis with standardized concentrations of THC or CBD to assess its efficacy in the young. What is Known: • The use of medical cannabis (THC and CBD) to treat a variety of diseases among children and adolescents is increasing. • In contrast to adults, there is no evidence to support the use of medical cannabis to treat chronic pain and spasticity in children, but substantial evidence to support the use of CBD in children with rare seizure disorders. What is New: • This study provides important insights into prescription practices, dosages, and treatment outcomes in children and adolescents using medical cannabis data from a real-life setting. • The effects of medical cannabis in children and adolescents with chronic conditions shown in our study support trials of medical cannabis for chronic conditions

    Xeno-free induced pluripotent stem cell-derived neural progenitor cells for in vivo applications

    Full text link
    BACKGROUND: Currently, there is no regenerative therapy for patients with neurological and neurodegenerative disorders. Cell-therapies have emerged as a potential treatment for numerous brain diseases. Despite recent advances in stem cell technology, major concerns have been raised regarding the feasibility and safety of cell therapies for clinical applications. METHODS: We generated good manufacturing practice (GMP)-compatible neural progenitor cells (NPCs) from transgene- and xeno-free induced pluripotent stem cells (iPSCs) that can be smoothly adapted for clinical applications. NPCs were characterized in vitro for their differentiation potential and in vivo after transplantation into wild type as well as genetically immunosuppressed mice. RESULTS: Generated NPCs had a stable gene-expression over at least 15 passages and could be scaled for up to 1018^{18} cells per initially seeded 106^{6} cells. After withdrawal of growth factors in vitro, cells adapted a neural fate and mainly differentiated into active neurons. To ensure a pure NPC population for in vivo applications, we reduced the risk of iPSC contamination by applying micro RNA-switch technology as a safety checkpoint. Using lentiviral transduction with a fluorescent and bioluminescent dual-reporter construct, combined with non-invasive in vivo bioluminescent imaging, we longitudinally tracked the grafted cells in healthy wild-type and genetically immunosuppressed mice as well as in a mouse model of ischemic stroke. Long term in-depth characterization revealed that transplanted NPCs have the capability to survive and spontaneously differentiate into functional and mature neurons throughout a time course of a month, while no residual pluripotent cells were detectable. CONCLUSION: We describe the generation of transgene- and xeno-free NPCs. This simple differentiation protocol combined with the ability of in vivo cell tracking presents a valuable tool to develop safe and effective cell therapies for various brain injuries

    LEMD2-associated progeroid syndrome: Expanding the phenotype of the nuclear envelopathy caused by a defect in LEMD2 gene

    Get PDF
    Nuclear envelopathies are rare genetic diseases that compromise the integrity of the nuclear envelope. Patients with a defect in LEM domain nuclear envelope protein 2 (LEMD2) leading to LEMD2-associated progeroid syndrome are exceedingly scarce in number, yet they exhibit shared clinical features including skeletal abnormalities and a prematurely-aged appearance. Our study broadens the understanding of LEMD2-associated progeroid syndrome by detailing its phenotypic and molecular characteristics in the first female and fourth reported case, highlighting a distinct impact on metabolic functions. The patient's history revealed growth delay, facial and skeletal abnormalities, and recurrent abdominal pain crises caused by hepatomegaly. Comparisons with the previously documented cases emphasized similarities in skeletal and facial features while showcasing unique variations, notably in cardiac and hepatic manifestations. In vitro experiments conducted on patient-derived peripheral blood and urinary epithelial cells and LEMD2-downregulated HepG2 cells confirmed abnormalities in the structure of the nuclear envelope in all three tissue-types. Overall, our work offers a comprehensive profile of a patient with LEMD2-related syndrome, emphasizing the hepatic involvement in the disease and broadening our understanding of clinical and molecular implications. This study not only contributes specific insights into LEMD2-related conditions but also underscores potential therapeutic paths for disorders affecting nuclear envelope dynamics

    LEMD2-associated progeroid syndrome: Expanding the phenotype of the nuclear envelopathy caused by a defect in LEMD2 gene.

    Get PDF
    Nuclear envelopathies are rare genetic diseases that compromise the integrity of the nuclear envelope. Patients with a defect in LEM domain nuclear envelope protein 2 (LEMD2) leading to LEMD2-associated progeroid syndrome are exceedingly scarce in number, yet they exhibit shared clinical features including skeletal abnormalities and a prematurely-aged appearance. Our study broadens the understanding of LEMD2-associated progeroid syndrome by detailing its phenotypic and molecular characteristics in the first female and fourth reported case, highlighting a distinct impact on metabolic functions. The patient's history revealed growth delay, facial and skeletal abnormalities, and recurrent abdominal pain crises caused by hepatomegaly. Comparisons with the previously documented cases emphasized similarities in skeletal and facial features while showcasing unique variations, notably in cardiac and hepatic manifestations. In vitro experiments conducted on patient-derived peripheral blood and urinary epithelial cells and LEMD2-downregulated HepG2 cells confirmed abnormalities in the structure of the nuclear envelope in all three tissue-types. Overall, our work offers a comprehensive profile of a patient with LEMD2-related syndrome, emphasizing the hepatic involvement in the disease and broadening our understanding of clinical and molecular implications. This study not only contributes specific insights into LEMD2-related conditions but also underscores potential therapeutic paths for disorders affecting nuclear envelope dynamics

    Intracerebral Transplantation and In Vivo Bioluminescence Tracking of Human Neural Progenitor Cells in the Mouse Brain

    No full text
    Cell therapy has long been an emerging treatment paradigm in experimental neurobiology. However, cell transplantation studies often rely on end-point measurements and can therefore only evaluate longitudinal changes of cell migration and survival to a limited extent. This paper provides a reliable, minimally invasive protocol to transplant and longitudinally track neural progenitor cells (NPCs) in the adult mouse brain. Before transplantation, cells are transduced with a lentiviral vector comprising a bioluminescent (firefly-luciferase) and fluorescent (green fluorescent protein [GFP]) reporter. The NPCs are transplanted into the right cortical hemisphere using stereotaxic injections in the sensorimotor cortex. Following transplantation, grafted cells were detected through the intact skull for up to five weeks (at days 0, 3, 14, 21, 35) with a resolution limit of 6,000 cells using in vivo bioluminescence imaging. Subsequently, the transplanted cells are identified in histological brain sections and further characterized with immunofluorescence. Thus, this protocol provides a valuable tool to transplant, track, quantify, and characterize cells in the mouse brain.ISSN:1940-087

    Xeno-free induced pluripotent stem cell-derived neural progenitor cells for in vivo applications

    No full text
    Background Currently, there is no regenerative therapy for patients with neurological and neurodegenerative disorders. Cell-therapies have emerged as a potential treatment for numerous brain diseases. Despite recent advances in stem cell technology, major concerns have been raised regarding the feasibility and safety of cell therapies for clinical applications. Methods We generated good manufacturing practice (GMP)-compatible neural progenitor cells (NPCs) from transgene- and xeno-free induced pluripotent stem cells (iPSCs) that can be smoothly adapted for clinical applications. NPCs were characterized in vitro for their differentiation potential and in vivo after transplantation into wild type as well as genetically immunosuppressed mice. Results Generated NPCs had a stable gene-expression over at least 15 passages and could be scaled for up to 10(18) cells per initially seeded 10(6) cells. After withdrawal of growth factors in vitro, cells adapted a neural fate and mainly differentiated into active neurons. To ensure a pure NPC population for in vivo applications, we reduced the risk of iPSC contamination by applying micro RNA-switch technology as a safety checkpoint. Using lentiviral transduction with a fluorescent and bioluminescent dual-reporter construct, combined with non-invasive in vivo bioluminescent imaging, we longitudinally tracked the grafted cells in healthy wild-type and genetically immunosuppressed mice as well as in a mouse model of ischemic stroke. Long term in-depth characterization revealed that transplanted NPCs have the capability to survive and spontaneously differentiate into functional and mature neurons throughout a time course of a month, while no residual pluripotent cells were detectable. Conclusion We describe the generation of transgene- and xeno-free NPCs. This simple differentiation protocol combined with the ability of in vivo cell tracking presents a valuable tool to develop safe and effective cell therapies for various brain injuries.ISSN:1479-587

    Developmental trajectories of neuroanatomical alterations associated with the 16p11.2 Copy Number Variations

    Get PDF
    International audienc
    corecore