7 research outputs found

    IFI27 transcription is an early predictor for COVID-19 outcomes, a multi-cohort observational study

    Get PDF
    PurposeRobust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness.MethodsWe conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients.ResultsWe show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression in the lower respiratory tract is associated with the presence of a high viral load. We further demonstrate that the systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 infection. For clinical outcome prediction (e.g., respiratory failure), IFI27 expression displays a high sensitivity (0.95) and specificity (0.83), outperforming other known predictors of COVID-19 outcomes. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients.ConclusionThese data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus

    Green Catalysts: Applied and Synthetic Photosynthesis

    No full text
    The biological process of photosynthesis was critical in catalyzing the oxygenation of Earth’s atmosphere 2.5 billion years ago, changing the course of development of life on Earth. Recently, the fields of applied and synthetic photosynthesis have utilized the light-driven protein–pigment supercomplexes central to photosynthesis for the photocatalytic production of fuel and other various valuable products. The reaction center Photosystem I is of particular interest in applied photosynthesis due to its high stability post-purification, non-geopolitical limitation, and its ability to generate the greatest reducing power found in nature. These remarkable properties have been harnessed for the photocatalytic production of a number of valuable products in the applied photosynthesis research field. These primarily include photocurrents and molecular hydrogen as fuels. The use of artificial reaction centers to generate substrates and reducing equivalents to drive non-photoactive enzymes for valuable product generation has been a long-standing area of interest in the synthetic photosynthesis research field. In this review, we cover advances in these areas and further speculate synthetic and applied photosynthesis as photocatalysts for the generation of valuable products

    Multiwavelength view of SPT-CL J2106-5844

    No full text
    Context. SPT-CL J2106-5844 is among the most massive galaxy clusters at z > 1 yet discovered. While initially used in cosmological tests to assess the compatibility with Λ Cold Dark Matter cosmology of such a massive virialized object at this redshift, more recent studies indicate SPT-CL J2106-5844 is undergoing a major merger and is not an isolated system with a singular, well-defined halo. Aims. We use sensitive, high spatial resolution measurements from the Atacama Large Millimeter/Submillimeter Array (ALMA) and Atacama Compact Array (ACA) of the thermal Sunyaev-Zeldovich (SZ) effect to reconstruct the pressure distribution of the intracluster medium in this system. These measurements are coupled with radio observations from the pilot survey for the Evolutionary Map of the Universe, using the Australian Square Kilometre Array Pathfinder (ASKAP), and the Australia Telescope Compact Array (ATCA) to search for diffuse nonthermal emission. Further, to better constrain the thermodynamic structure of the cluster, we complement our analysis with reprocessed archival Chandra observations. Methods. We jointly fit the ALMA and ACA SZ data in uv-space using a Bayesian forward modeling technique. The ASKAP and low-frequency ATCA data are processed and imaged to specifically highlight any potential diffuse radio emission. Results. In the ALMA and ACA SZ data, we reliably identify at high significance two main gas components associated with the mass clumps inferred from weak lensing. Our statistical test excludes at the ∌9.9σ level the possibility of describing the system with a single SZ component. While the components had been more difficult to identify in the X-ray data alone, we find that the bimodal gas distribution is supported by the X-ray hardness distribution. The EMU radio observations reveal a diffuse radio structure ∌400 kpc in projected extent along the northwest-southeast direction, indicative of strong activity from the active galactic nucleus within the brightest cluster galaxy. Interestingly, a putative optical star-forming filamentary structure detected in the HST image is in an excellent alignment with the radio structure, albeit on a smaller scale

    IFI27 transcription is an early predictor for COVID-19 outcomes; a multi-cohort observational study

    No full text
    Robust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness. We conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients. We show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression is associated with the presence of a high viral load. We further demonstrate that systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 severity. For clinical outcome prediction (e.g. respiratory failure), IFI27 expression displays a high positive (0.83) and negative (0.95) predictive value, outperforming all other known predictors of COVID-19 severity. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 swine influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients. These data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus. We searched the scientific literature using PubMed to identify studies that used the IFI27 biomarker to predict outcomes in COVID-19 patients. We used the search terms “IFI27”, “COVID-19, “gene expression” and “outcome prediction”. We did not identify any study that investigated the role of IFI27 biomarker in outcome prediction. Although ten studies were identified using the general terms of “gene expression” and “COVID-19”, IFI27 was only mentioned in passing as one of the identified genes. All these studies addressed the broader question of the host response to COVID-19; none focused solely on using IFI27 to improve the risk stratification of infected patients in a pandemic. Here, we present the findings of a multi-cohort study of the IFI27 biomarker in COVID-19 patients. Our findings show that the host response, as reflected by blood IFI27 gene expression, accurately predicts COVID-19 disease progression (positive and negative predictive values; 0.83 and 0.95, respectively), outperforming age, comorbidity, C-reactive protein and all other known risk factors. The strong association of IFI27 with disease severity occurs not only in SARS-CoV-2 infection, but also in other respiratory viruses with pandemic potential, such as the influenza virus. These findings suggest that host response biomarkers, such as IFI27, could help identify high-risk COVID-19 patients - those who are more likely to develop infection complications - and therefore may help improve patient triage in a pandemic. This is the first systemic study of the clinical role of IFI27 in the current COVID-19 pandemic and its possible future application in other respiratory virus pandemics. The findings not only could help improve the current management of COVID-19 patients but may also improve future pandemic preparedness

    IFI27 transcription is an early predictor for COVID-19 outcomes, a multi-cohort observational study

    Get PDF
    Purpose: Robust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness. Methods: We conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients. Results: We show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression in the lower respiratory tract is associated with the presence of a high viral load. We further demonstrate that the systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 infection. For clinical outcome prediction (e.g., respiratory failure), IFI27 expression displays a high sensitivity (0.95) and specificity (0.83), outperforming other known predictors of COVID-19 outcomes. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients. Conclusion: These data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus
    corecore