22 research outputs found

    MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice

    Get PDF
    During inflammation and infection, hematopoietic stem and progenitor cells are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of miR-146a produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to HSC exhaustion and hematopoietic neoplasms. At the cellular level, the defects are attributable to both an intrinsic problem in the miR-146a–deficient HSCs and extrinsic effects of lymphocytes and nonhematopoietic cells. At the molecular level, this involves a molecular axis consisting of miR-146a, signaling protein TRAF6, transcriptional factor NF-κB, and cytokine IL-6. This study has identified miR-146a to be a critical regulator of HSC homeostasis during chronic inflammation in mice and provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms

    Regulation of APC development, immune response, and autoimmunity by Bach1/HO-1 pathway in mice

    Get PDF
    APCs are essential for innate and adaptive immunity as well as self-immune tolerance. Here, we show that the Cap’n’collar member Bach1 regulates the generation of APCs, specifically macrophages and dendritic cells, in mice. The impaired APC development in Bach1^(-/-) mice was accompanied by defects in downstream T-cell responses and partial protection from experimental autoimmune encephalomyelitis. Genomewide analyses identified a panel of Bach1 target genes and ablation of the direct Bach1 target gene HO-1 exacerbated the impaired APC development observed in Bach1^(-/-) mice. This was attributed to the impaired ability of HO-1^(-/-)Bach1^(-/-) double mutants to produce upstreamAPC progenitor cells, including common myeloid progenitor (CMP)–Flk2^+. By contrast, we observed an increase in hematopoietic stem-progenitor cells (HSPCs) in these mice, suggesting a developmental block in the progression of HSPCs to CMP-Flk2^+ and subsequently APCs

    The microRNA-212/132 cluster regulates B cell development by targeting Sox4

    Get PDF
    MicroRNAs have emerged as key regulators of B cell fate decisions and immune function. Deregulation of several microRNAs in B cells leads to the development of autoimmune disease and cancer in mice. We demonstrate that the microRNA-212/132 cluster (miR-212/132) is induced in B cells in response to B cell receptor signaling. Enforced expression of miR-132 results in a block in early B cell development at the prepro–B cell to pro–B cell transition and induces apoptosis in primary bone marrow B cells. Importantly, loss of miR-212/132 results in accelerated B cell recovery after antibody-mediated B cell depletion. We find that Sox4 is a target of miR-132 in B cells. Co-expression of SOX4 with miR-132 rescues the defect in B cell development from overexpression of miR-132 alone, thus suggesting that miR-132 may regulate B lymphopoiesis through Sox4. In addition, we show that the expression of miR-132 can inhibit cancer development in cells that are prone to B cell cancers, such as B cells expressing the c-Myc oncogene. We have thus uncovered miR-132 as a novel contributor to B cell development

    An NF-ÎşB-microRNA regulatory network tunes macrophage inflammatory responses

    Get PDF
    The innate inflammatory response must be tightly regulated to ensure effective immune protection. NF-ÎşB is a key mediator of the inflammatory response, and its dysregulation has been associated with immune-related malignancies. Here, we describe a miRNA-based regulatory network that enables precise NF-ÎşB activity in mouse macrophages. Elevated miR-155 expression potentiates NF-ÎşB activity in miR-146a-deficient mice, leading to both an overactive acute inflammatory response and chronic inflammation. Enforced miR-155 expression overrides miR-146a-mediated repression of NF-ÎşB activation, thus emphasizing the dominant function of miR-155 in promoting inflammation. Moreover, miR-155-deficient macrophages exhibit a suboptimal inflammatory response when exposed to low levels of inflammatory stimuli. Importantly, we demonstrate a temporal asymmetry between miR-155 and miR-146a expression during macrophage activation, which creates a combined positive and negative feedback network controlling NF-ÎşB activity. This miRNA-based regulatory network enables a robust yet time-limited inflammatory response essential for functional immunity

    MicroRNA-34a Perturbs B Lymphocyte Development by Repressing the Forkhead Box Transcription Factor Foxp1

    Get PDF
    MicroRNAs (miRNAs) can influence lineage choice or affect critical developmental checkpoints during hematopoiesis. We examined the role of the p53-induced microRNA miR-34a in hematopoiesis by gain-of-function analysis in murine bone marrow. Constitutive expression of miR-34a led to a block in B cell development at the pro-B-cell-to-pre-B-cell transition, leading to a reduction in mature B cells. This block appeared to be mediated primarily by inhibited expression of the transcription factor Foxp1. Foxp1 was a direct target of miR-34a in a 3′-untranslated region (UTR)-dependent fashion. Knockdown of Foxp1 by siRNA recapitulated the B cell developmental phenotype induced by miR-34a, whereas cotransduction of Foxp1 lacking its 3′ UTR with miR-34a rescued B cell maturation. Knockdown of miR-34a resulted in increased amounts of Foxp1 and mature B cells. These findings identify a role for miR-34a in connecting the p53 network with suppression of Foxp1, a known B cell oncogene

    Dual mechanisms by which MiR-125b represses IRF4 to induce myeloid and B cell leukemias

    Get PDF
    The oncomir microRNA-125b (miR-125b) is up-regulated in a variety of human neoplastic blood disorders and constitutive up-regulation of miR-125b in mice can promote myeloid and B cell leukemia. We found that miR-125b promotes myeloid and B cell neoplasm by inducing tumorigenesis in hematopoietic progenitor cells. Our study demonstrates that miR-125b induces myeloid leukemia by enhancing myeloid progenitor output from stem cells as well as inducing immortality, self-renewal, and tumorigenesis in myeloid progenitors. Through functional and genetic analyses, we demonstrated that miR-125b induces myeloid and B cell leukemia by inhibiting IRF4 but through distinct mechanisms; it induces myeloid leukemia through repressing IRF4 at the mRNA level without altering the genomic DNA and induces B cell leukemia via genetic deletion of the gene encoding IRF4

    miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice

    Get PDF
    Excessive or inappropriate activation of the immune system can be deleterious to the organism, warranting multiple molecular mechanisms to control and properly terminate immune responses. MicroRNAs (miRNAs), ~22-nt-long noncoding RNAs, have recently emerged as key posttranscriptional regulators, controlling diverse biological processes, including responses to non-self. In this study, we examine the biological role of miR-146a using genetically engineered mice and show that targeted deletion of this gene, whose expression is strongly up-regulated after immune cell maturation and/or activation, results in several immune defects. Collectively, our findings suggest that miR-146a plays a key role as a molecular brake on inflammation, myeloid cell proliferation, and oncogenic transformation

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Modelo de desenvolvimento de softwares em projetos de pesquisa

    Get PDF
    TCC (graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Curso de Ciências da Computação.Propor um modelo de desenvolvimento de softwares que seja aderente ao processo de desenvolvimento dentro de grupos de pesquisa, onde, muitas vezes, as condições de desenvolvimento são divergentes em relação ao desenvolvimento comercial tradicional do qual tratam os modelos de desenvolvimento de software conhecidos no mercado. Será utilizada a sistemática adotada pelo LabTIC - ESAG - UDESC, o qual está sendo proposto por este trabalho, tanto para teste quanto para avaliação do modelo proposto
    corecore