7 research outputs found

    Comprehensive theory of the relative phase in atom-field interactions

    Full text link
    We explore the role played by the quantum relative phase in a well-known model of atom-field interaction, namely, the Dicke model. We introduce an appropriate polar decomposition of the atom-field relative amplitudes that leads to a truly Hermitian relative-phase operator, whose eigenstates correctly describe the phase properties, as we demonstrate by studying the positive operator-valued measure derived from it. We find the probability distribution for this relative phase and, by resorting to a numerical procedure, we study its time evolution.Comment: 20 pages, 4 figures, submitted to Phys. Rev.

    Effective Hamiltonians in quantum optics: a systematic approach

    Full text link
    We discuss a general and systematic method for obtaining effective Hamiltonians that describe different nonlinear optical processes. The method exploits the existence of a nonlinear deformation of the usual su(2) algebra that arises as the dynamical symmetry of the original model. When some physical parameter, dictated by the process under consideration, becomes small, we immediately get a diagonal effective Hamiltonian that correctly represents the dynamics for arbitrary states and long times. We extend the technique to su(3) and su(N), finding the corresponding effective Hamiltonians when some resonance conditions are fulfilled.Comment: 13 Pages, no figures, submitted for publicatio

    Distance-based degrees of polarization for a quantum field

    Full text link
    It is well established that unpolarized light is invariant with respect to any SU(2) polarization transformation. This requirement fully characterizes the set of density matrices representing unpolarized states. We introduce the degree of polarization of a quantum state as its distance to the set of unpolarized states. We use two different candidates of distance, namely the Hilbert-Schmidt and the Bures metric, showing that they induce fundamentally different degrees of polarization. We apply these notions to relevant field states and we demonstrate that they avoid some of the problems arising with the classical definition.Comment: 8 pages, 1 eps figur
    corecore