925 research outputs found
Evaluation of Moisture Content Changes in Taiwan Red Cypress During Drying Using Ultrasonic and Tap-Tone Testing
Moisture content affects most of the important properties of wood, therefore it is important to control during drying and in use. The purpose of this study was to investigate moisture content changes in Taiwan red cypress during drying. Two types of nondestructive testing were used, ultrasonic and tap-tone. The results showed that ultrasonic and tap-tone velocities increased with decreasing moisture content with the major effect below the FSP. A second-order regression relationship was found between ultrasonic and tap-tone velocities with moisture content desorption during drying with a coefficient of determination of 0.77 and 0.88, respectively. Moreover, the effects of moisture content desorption on dynamic moduli, calculated from ultrasonic and tap-tone methods, were demonstrated. Finally, a new parameter (Vi/Vx), the ratio of initial velocity (before drying) to the velocity at any moisture content, was effectively applied to evaluate moisture content changes in wood during drying. The tap-tone method was found to be a reliable tool to measure moisture content changes during the drying of wood
Proposal to determine the Fermi-surface topology of a doped iron-based superconductor using bulk-sensitive Fourier-transform Compton scattering
We have carried out first-principles calculations of the Compton scattering
spectra to demonstrate that the filling of the hole Fermi surface in
LaOFFeAs produces a distinct signature in the Fourier transformed
Compton spectrum when the momentum transfer vector lies along the [100]
direction. We thus show how the critical concentration , where hole Fermi
surface pieces are filled up and the superconductivity mediated by
antiferromagnetic spin fluctuations is expected to be suppressed, can be
obtained in a bulk-sensitive manner.Comment: 4 pages, 6 figures, accepted in Physical Review
Multiple upstream modules regulate zebrafish myf5 expression
BACKGROUND: Myf5 is one member of the basic helix-loop-helix family of transcription factors, and it functions as a myogenic factor that is important for the specification and differentiation of muscle cells. The expression of myf5 is somite- and stage-dependent during embryogenesis through a delicate regulation. However, this complex regulatory mechanism of myf5 is not clearly understood. RESULTS: We isolated a 156-kb bacterial artificial chromosome clone that includes an upstream 80-kb region and a downstream 70-kb region of zebrafish myf5 and generated a transgenic line carrying this 156-kb segment fused to a green fluorescent protein (GFP) reporter gene. We find strong GFP expression in the most rostral somite and in the presomitic mesoderm during segmentation stages, similar to endogenous myf5 expression. Later, the GFP signals persist in caudal somites near the tail bud but are down-regulated in the older, rostral somites. During the pharyngula period, we detect GFP signals in pectoral fin buds, dorsal rostral myotomes, hypaxial myotomes, and inferior oblique and superior oblique muscles, a pattern that also corresponds well with endogenous myf5 transcripts. To characterize the specific upstream cis-elements that regulate this complex and dynamic expression pattern, we also generated several transgenic lines that harbor various lengths within the upstream 80-kb segment. We find that (1) the -80 kb/-9977 segment contains a fin and cranial muscle element and a notochord repressor; (2) the -9977/-6213 segment contains a strong repressive element that does not include the notochord-specific repressor; (3) the -6212/-2938 segment contains tissue-specific elements for bone and spinal cord; (4) the -2937/-291 segment contains an eye enhancer, and the -2937/-2457 segment is required for notochord and myocyte expression; and (5) the -290/-1 segment is responsible for basal transcription in somites and the presomitic mesoderm. CONCLUSION: We suggest that the cell lineage-specific expression of myf5 is delicately orchestrated by multiple modules within the distal upstream region. This study provides an insight to understand the molecular control of myf5 and myogenesis in the zebrafish
Lindhard and RPA susceptibility computations in extended momentum space in electron doped cuprates
We present an approximation for efficient calculation of the Lindhard
susceptibility in a periodic system through the use of
simple products of real space functions and the fast Fourier transform (FFT).
The method is illustrated by providing results for the
electron doped cuprate NdCeCuO extended over several
Brillouin zones. These results are relevant for interpreting inelastic X-ray
scattering spectra from cuprates.Comment: 6 pages, 6 figures, accepted in Physical Review
Benthic Fluxes of Dissolved Organic Carbon from Gas Hydrate Sediments in the Northern South China Sea
Hydrocarbon vents have recently been reported to contribute considerable amounts of dissolved organic carbon (DOC) to the oceans. Many such hydrocarbon vents widely exist in the northern South China Sea (NSCS). To investigate if these hydrocarbon vent sites release DOC, we used a real-time video multiple-corer to collect bottom seawater and surface sediments at vent sites. We analyzed concentrations of DOC in these samples and estimated DOC fluxes. Elevated DOC concentrations in the porewaters were found at some sites suggesting that DOC may come from these hydrocarbon vents. Benthic fluxes of DOC from these sediments were 28 to 1264 µmol m−2 d−1 (on average ~321 µmol m−2 d−1 which are several times higher than most DOC fluxes in coastal and continental margin sediments. The results demonstrate that the real-time video multiple-corer can precisely collect samples at vent sites. The estimated benthic DOC flux from the methane venting sites (8.6 x 106 mol y-1, is 24% of the DOC discharge from the Pearl River to the South China Sea, indicating that these sediments make an important contribution to the DOC in deep waters
- …