74 research outputs found

    Effect of subconjunctivally injected, liposome-bound, low-molecular-weight heparin on the absorption rate of subconjunctival hemorrhage in rabbits

    Get PDF
    PURPOSE: To investigate the effect of subconjunctival injection of liposome-bound, low-molecular-weight heparin (LMWH) on the absorption rate of subconjunctival hemorrhages. METHODS: Subconjunctival hemorrhages were induced in both eyes of 30 rabbits by the subconjunctival injection of 0.1 mL of autologous blood from auricular marginal veins. After 8 hours, randomized subconjunctival injections of one of three materials were made: 5 IU/mL liposome-bound LMWH (0.1 mL) in 18 eyes (group A), only liposomes (0.1 mL) in 14 eyes (group B), the free form of LMWH (5 IU/mL, 0.1 mL) in 14 eyes (group C), or no injection in 14 eyes (group D). Subconjunctival hemorrhages were photographed with a digital camera at 8, 24, 48, 72, 96, and 120 hours after induction of subconjunctival hemorrhages, sized with an image analyzer, and compared between groups. RESULTS: Subconjunctival hemorrhages were absorbed faster in group A (liposome-bound LMWH injected) than in with group B (liposome injected). Comparison of groups A and C (free LMWH injected) showed statistical differences in the absorption rates at 96 and 120 hours except at 24, 48, and 72 hours. The mean elapsed time for the complete resorption of subconjunctival hemorrhages was shortest in group A among four groups, whereas group B and the control showed no significant differences. The ocular and systemic absorption of LMWH were significantly lower after injection of the liposome-bound than the free form. CONCLUSIONS: The subconjunctival injection of liposome-bound LMWH appears to enhance subconjunctival hemorrhage absorption in rabbits

    Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity

    Get PDF
    The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified red-crowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH, RPA1, PHAX, HNMT, HS2ST1, PPCDC, PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species

    Design strategy of highly efficient nonlinear optical orange‐colored crystals with two electron‐withdrawing groups

    Get PDF
    A new class of highly efficient nonlinear optical organic salt crystals is reported. In nonlinear optics based on organic materials, it is well known that using two electron-withdrawing groups (EWGs) onto cationic electron acceptors instead of conventional one EWG remarkably enhances microscopic optical nonlinearity for chromophores. However, the corresponding organic crystals possessing enhanced large macroscopic optical nonlinearity have not been reported yet. Herein, a design strategy is proposed for obtaining highly efficient nonlinear optical crystals based on two EWGs in cationic electron acceptors. Introducing a phenolic electron donor, promoting a head-to-tail interionic assembly, along with a two-EWG N-pyrimidinyl pyridinium electron acceptor in cationic chromophores results in a preferred non-centrosymmetric, perfectly parallel alignment of chromophores in crystal. Newly designed OPR (4-(4-hydroxystyryl)-1-(pyrimidin-2-yl)pyridinium) crystals exhibit approximately two times larger effective first hyperpolarizability than that of analogous N-alkyl OHP (4-(4-hydroxystyryl)-1-methylpyridinium) crystals based on only one EWG. OPR crystals exhibit comparable second-order optical nonlinearity to benchmark red-colored DAST (4-(4-(dimethylamino)styryl)-1-methylpyridinium 4-methylbenzenesulfonate) crystals, but a significant blue-shifted absorption resulting in orange-color crystals. Therefore, phenolic organic salt crystals using two EWGs are highly promising materials for various nonlinear optical applications

    High‐density organic electro‐optic crystals for ultra‐broadband THz spectroscopy

    Get PDF
    Ultra-broadband THz photonics covering the 0.3–20 THz range provides a very attractive foundation for a wide range of basic research and industrial applications. However, the lack of ultra-broadband THz devices has yet to be overcome. In this work, high-density organic electro-optic crystals are newly developed for efficient THz wave generation in a very broad THz spectral range and are successfully used for a broadband THz time-domain spectroscopy. The new organic THz generator crystals, namely the OHP-TFS crystals, have very low void volume, high density, and are shown to cover the ultra-broadband THz spectrum up to about 15 THz, which cannot be easily accessed with the more widely used inorganic-based THz generators. In addition to the very favorable broadband properties, the generated THz electric-field amplitude at the pump wavelength of 1560 nm is about 40 times higher than that generated by a commercial inorganic THz generator (ZnTe crystal). By using the newly developed OHP-TFS as generation crystal in a compact table-top all-organic THz time-domain spectrometer based on a low-cost telecom fiber laser, the optical characteristics of a model material are successfully determined in the broad 1.5–12.5 THz range with high accuracy

    Exercise and the Risk of Dementia in Patients with Newly Diagnosed Atrial Fibrillation: A Nationwide Population-Based Study

    Get PDF
    Background: It is unclear whether exercise would reduce dementia in patients with a new diagnosis of atrial fibrillation (AF). Therefore, we aimed to evaluate the association between the change in physical activity (PA) before and after new-onset AF and the risk of incident dementia. Methods: Using the Korean National Health Insurance Service database, we enrolled a total of 126,555 patients with newly diagnosed AF between 2010 and 2016, who underwent health examinations within two years before and after their diagnosis of AF. The patients were divided into four groups: persistent non-exercisers, exercise starters, exercise quitters, and exercise maintainers. Results: Based on a total of 396,503 person-years of follow-up, 5943 patients were diagnosed with dementia. Compared to persistent non-exercisers, exercise starters (adjusted hazard ratio (aHR) 0.87; 95% confidence interval (CI) 0.81–0.94), and exercise maintainers (aHR 0.66; 95% CI 0.61–0.72) showed a lower risk of incident dementia; however, the risk was similar in exercise quitters (aHR 0.98; 95% CI 0.92–1.05) (p-trend < 0.001). There was a J-shaped relationship between the dose of exercise and the risk of dementia, with the risk reduction maximized at 5–6 times per week of moderate-to-vigorous PA among exercise starters. Conclusion: Patients who initiated or continued regular exercise after diagnosis of AF were associated with a lower risk of dementia than persistent non-exercisers, with no risk reduction associated with exercise cessation. Our findings may provide evidence for the benefit of exercise prescription to patients with new-onset AF to prevent incident dementia regardless of their current exercise status

    Association between exercise habits and stroke, heart failure, and mortality in Korean patients with incident atrial fibrillation: A nationwide population-based cohort study

    Get PDF
    BackgroundThere is a paucity of information about cardiovascular outcomes related to exercise habit change after a new diagnosis of atrial fibrillation (AF). We investigated the association between exercise habits after a new AF diagnosis and ischemic stroke, heart failure (HF), and all-cause death.Methods and findingsThis is a nationwide population-based cohort study using data from the Korea National Health Insurance Service. A retrospective analysis was performed for 66,692 patients with newly diagnosed AF between 2010 and 2016 who underwent 2 serial health examinations within 2 years before and after their AF diagnosis. Individuals were divided into 4 categories according to performance of regular exercise, which was investigated by a self-reported questionnaire in each health examination, before and after their AF diagnosis: persistent non-exercisers (30.5%), new exercisers (17.8%), exercise dropouts (17.4%), and exercise maintainers (34.2%). The primary outcomes were incidence of ischemic stroke, HF, and all-cause death. Differences in baseline characteristics among groups were balanced considering demographics, comorbidities, medications, lifestyle behaviors, and income status. The risks of the outcomes were computed by weighted Cox proportional hazards models with inverse probability of treatment weighting (IPTW) during a mean follow-up of 3.4 ± 2.0 years. The new exerciser and exercise maintainer groups were associated with a lower risk of HF compared to the persistent non-exerciser group: the hazard ratios (HRs) (95% CIs) were 0.95 (0.90-0.99) and 0.92 (0.88-0.96), respectively (p ConclusionsInitiating or continuing regular exercise after AF diagnosis was associated with lower risks of HF and mortality. The promotion of exercise might reduce the future risk of adverse outcomes in patients with AF

    Organic broadband THz generators optimized for efficient near‐infrared optical pumping

    Get PDF
    New organic THz generators are designed herein by molecular engineering of the refractive index, phonon mode, and spatial asymmetry. These benzothiazolium crystals simultaneously satisfy the crucial requirements for efficient THz wave generation, including having nonlinear optical chromophores with parallel alignment that provide large optical nonlinearity; good phase matching for enhancing the THz generation efficiency in the near-infrared region; strong intermolecular interactions that provide restraining THz self-absorption; high solubility that promotes good crystal growth ability; and a plate-like crystal morphology with excellent optical quality. Consequently, the as-grown benzothiazolium crystals exhibit excellent characteristics for THz wave generation, particularly at near-infrared pump wavelengths around 1100 nm, which is very promising given the availability of femtosecond laser sources at this wavelength, where current conventional THz generators deliver relatively low optical-to-THz conversion efficiencies. Compared to a 1.0-mm-thick ZnTe crystal as an inorganic benchmark, the 0.28-mm-thick benzothiazolium crystal yields a 19 times higher peak-to-peak THz electric field with a broader spectral bandwidth (>6.5 THz) when pumped at 1140 nm. The present work provides a valuable approach toward realizing organic crystals that can be pumped by near-infrared sources for efficient THz wave generation

    Prognostic Implications of Fractional Flow Reserve After Coronary Stenting:A Systematic Review and Meta-analysis

    Get PDF
    IMPORTANCE: Fractional flow reserve (FFR) after percutaneous coronary intervention (PCI) is generally considered to reflect residual disease. Yet the clinical relevance of post-PCI FFR after drug-eluting stent (DES) implantation remains unclear. OBJECTIVE: To evaluate the clinical relevance of post-PCI FFR measurement after DES implantation. DATA SOURCES: MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were searched for relevant published articles from inception to June 18, 2022. STUDY SELECTION: Published articles that reported post-PCI FFR after DES implantation and its association with clinical outcomes were included. DATA EXTRACTION AND SYNTHESIS: Patient-level data were collected from the corresponding authors of 17 cohorts using a standardized spreadsheet. Meta-estimates for primary and secondary outcomes were analyzed per patient and using mixed-effects Cox proportional hazard regression with registry identifiers included as a random effect. All processes followed the Preferred Reporting Items for Systematic Review and Meta-analysis of Individual Participant Data. MAIN OUTCOMES AND MEASURES: The primary outcome was target vessel failure (TVF) at 2 years, a composite of cardiac death, target vessel myocardial infarction (TVMI), and target vessel revascularization (TVR). The secondary outcome was a composite of cardiac death or TVMI at 2 years. RESULTS: Of 2268 articles identified, 29 studies met selection criteria. Of these, 28 articles from 17 cohorts provided data, including a total of 5277 patients with 5869 vessels who underwent FFR measurement after DES implantation. Mean (SD) age was 64.4 (10.1) years and 4141 patients (78.5%) were men. Median (IQR) post-PCI FFR was 0.89 (0.84-0.94) and 690 vessels (11.8%) had a post-PCI FFR of 0.80 or below. The cumulative incidence of TVF was 340 patients (7.2%), with cardiac death or TVMI occurring in 111 patients (2.4%) at 2 years. Lower post-PCI FFR significantly increased the risk of TVF (adjusted hazard ratio [HR] per 0.01 FFR decrease, 1.04; 95% CI, 1.02-1.05; P < .001). The risk of cardiac death or MI also increased inversely with post-PCI FFR (adjusted HR, 1.03; 95% CI, 1.00-1.07, P = .049). These associations were consistent regardless of age, sex, the presence of hypertension or diabetes, and clinical diagnosis. CONCLUSIONS AND RELEVANCE: Reduced FFR after DES implantation was common and associated with the risks of TVF and of cardiac death or TVMI. These results indicate the prognostic value of post-PCI physiologic assessment after DES implantation

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore