21 research outputs found

    Genetic Factors Associated with Heading Responses Revealed by Field Evaluation of 274 Barley Accessions for 20 Seasons

    Get PDF
    Heading time is a key trait in cereals affecting the maturation period for optimal grain filling before harvest. Here, we aimed to understand the factors controlling heading time in barley (Hordeum vulgare). We characterized a set of 274 barley accessions collected worldwide by planting them for 20 seasons under different environmental conditions at the same location in Kurashiki, Japan. We examined interactions among accessions, known genetic factors, and an environmental factor to determine the factors controlling heading response. Locally adapted accessions have been selected for genetic factors that stabilize heading responses appropriate for barley cultivation, and these accessions show stable heading responses even under varying environmental conditions. We identified vernalization requirement and PPD-H1 haplotype as major stabilizing mechanisms of the heading response for regional adaptation in Kurashiki

    Cellular and transcriptomic analyses reveal two-staged chloroplast biogenesis underpinning photosynthesis build-up in the wheat leaf

    Get PDF
    Background The developmental gradient in monocot leaves has been exploited to uncover leaf developmental gene expression programs and chloroplast biogenesis processes. However, the relationship between the two is barely understood, which limits the value of transcriptome data to understand the process of chloroplast development. Results Taking advantage of the developmental gradient in the bread wheat leaf, we provide a simultaneous quantitative analysis for the development of mesophyll cells and of chloroplasts as a cellular compartment. This allows us to generate the first biologically-informed gene expression map of this leaf, with the entire developmental gradient from meristematic to fully differentiated cells captured. We show that the first phase of plastid development begins with organelle proliferation, which extends well beyond cell proliferation, and continues with the establishment and then the build-up of the plastid genetic machinery. The second phase is marked by the development of photosynthetic chloroplasts which occupy the available cellular space. Using a network reconstruction algorithm, we predict that known chloroplast gene expression regulators are differentially involved across those developmental stages. Conclusions Our analysis generates both the first wheat leaf transcriptional map and one of the most comprehensive descriptions to date of the developmental history of chloroplasts in higher plants. It reveals functionally distinct plastid and chloroplast development stages, identifies processes occurring in each of them, and highlights our very limited knowledge of the earliest drivers of plastid biogenesis, while providing a basis for their future identification

    Genetic Elucidation for Response of Flowering Time to Ambient Temperatures in Asian Rice Cultivars

    Get PDF
    Climate resilience of crops is critical for global food security. Understanding the genetic basis of plant responses to ambient environmental changes is key to developing resilient crops. To detect genetic factors that set flowering time according to seasonal temperature conditions, we evaluated differences of flowering time over years by using chromosome segment substitution lines (CSSLs) derived from japonica rice cultivars "Koshihikari" x "Khao Nam Jen", each with different robustness of flowering time to environmental fluctuations. The difference of flowering times in 9 years' field tests was large in "Khao Nam Jen" (36.7 days) but small in "Koshihikari" (9.9 days). Part of this difference was explained by two QTLs. A CSSL with a "Khao Nam Jen" segment on chromosome 11 showed 28.0 days' difference; this QTL would encode a novel flowering-time gene. Another CSSL with a segment from "Khao Nam Jen" in the region around Hd16 on chromosome 3 showed 23.4 days" difference. A near-isogenic line (NIL) for Hd16 showed 21.6 days' difference, suggesting Hd16 as a candidate for this QTL. RNA-seq analysis showed differential expression of several flowering-time genes between early and late flowering seasons. Low-temperature treatment at panicle initiation stage significantly delayed flowering in the CSSL and NIL compared with "Koshihikari". Our results unravel the molecular control of flowering time under ambient temperature fluctuations

    BdWRKY38 is required for the incompatible interaction of Brachypodium distachyon with the necrotrophic fungus Rhizoctonia solani

    Get PDF
    Rhizoctonia solani is a soilā€borne necrotrophic fungus that causes sheath blight in grasses. The basal resistance of compatible interactions between R. solani and rice is known to be modulated by some WRKY transcription factors (TFs). However, genes and defense responses involved in incompatible interaction with R. solani remain unexplored, because no such interactions are known in any host plants. Recently, we demonstrated that Bd3ā€1, an accession of the model grass Brachypodium distachyon, is resistant to R. solani and, upon inoculation with the fungus, undergoes rapid induction of genes responsive to the phytohormone salicylic acid (SA) that encode the WRKY TFs BdWRKY38 and BdWRKY44. Here, we show that endogenous SA and these WRKY TFs positively regulate this accessionā€specific R. solani resistance. In contrast to a susceptible accession (Bd21), the infection process in the resistant accessions Bd3ā€1 and Tekā€3 was suppressed at early stages before the development of fungal biomass and infection machinery. A comparative transcriptome analysis during pathogen infection revealed that putative WRKYā€dependent defense genes were induced faster in the resistant accessions than in Bd21. A gene regulatory network (GRN) analysis based on the transcriptome dataset demonstrated that BdWRKY38 was a GRN hub connected to many target genes specifically in resistant accessions, whereas BdWRKY44 was shared in the GRNs of all three accessions. Moreover, overexpression of BdWRKY38 increased R. solani resistance in Bd21. Our findings demonstrate that these resistant accessions can activate an incompatible host response to R. solani, and BdWRKY38 regulates this response by mediating SA signaling

    Parental legacy and regulatory novelty in Brachypodium diurnal transcriptomes accompanying their polyploidy

    Get PDF
    Polyploidy is a widespread phenomenon in eukaryotes that can lead to phenotypic novelty and has important implications for evolution and diversification. The modification of phenotypes in polyploids relative to their diploid progenitors may be associated with altered gene expression. However, it is largely unknown how interactions between duplicated genes affect their diurnal expression in allopolyploid species. In this study, we explored parental legacy and hybrid novelty in the transcriptomes of an allopolyploid species and its diploid progenitors. We compared the diurnal transcriptomes of representative Brachypodium cytotypes, including the allotetraploid Brachypodium hybridum and its diploid progenitors Brachypodium distachyon and Brachypodium stacei. We also artificially induced an autotetraploid B. distachyon. We identified patterns of homoeolog expression bias (HEB) across Brachypodium cytotypes and time-dependent gain and loss of HEB in B. hybridum. Furthermore, we established that many genes with diurnal expression experienced HEB, while their expression patterns and peak times were correlated between homoeologs in B. hybridum relative to B. distachyon and B. stacei, suggesting diurnal synchronization of homoeolog expression in B. hybridum. Our findings provide insight into the parental legacy and hybrid novelty associated with polyploidy in Brachypodium, and highlight the evolutionary consequences of diurnal transcriptional regulation that accompanied allopolyploidy

    Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    Get PDF
    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/

    Large-Scale Collection and Analysis of Full-Length cDNAs from <i>Brachypodium distachyon</i> and Integration with Pooideae Sequence Resources

    Get PDF
    <div><p>A comprehensive collection of full-length cDNAs is essential for correct structural gene annotation and functional analyses of genes. We constructed a mixed full-length cDNA library from 21 different tissues of <i>Brachypodium distachyon</i> Bd21, and obtained 78,163 high quality expressed sequence tags (ESTs) from both ends of ca. 40,000 clones (including 16,079 contigs). We updated gene structure annotations of <i>Brachypodium</i> genes based on full-length cDNA sequences in comparison with the latest publicly available annotations. About 10,000 non-redundant gene models were supported by full-length cDNAs; ca. 6,000 showed some transcription unit modifications. We also found ca. 580 novel gene models, including 362 newly identified in Bd21. Using the updated transcription start sites, we searched a total of 580 plant <i>cis</i>-motifs in the āˆ’3 kb promoter regions and determined a genome-wide <i>Brachypodium</i> promoter architecture. Furthermore, we integrated the <i>Brachypodium</i> full-length cDNAs and updated gene structures with available sequence resources in wheat and barley in a web-accessible database, the RIKEN <i>Brachypodium</i> FL cDNA database. The database represents a ā€œone-stopā€ information resource for all genomic information in the Pooideae, facilitating functional analysis of genes in this model grass plant and seamless knowledge transfer to the Triticeae crops.</p></div

    Genetic Factors Associated with Heading Responses Revealed by Field Evaluation of 274 Barley Accessions for 20 Seasons

    No full text
    Heading time is a key trait in cereals affecting the maturation period for optimal grain filling before harvest. Here, we aimed to understand the factors controlling heading time in barley (Hordeum vulgare). We characterized a set of 274 barley accessions collected worldwide by planting them for 20 seasons under different environmental conditions at the same location in Kurashiki, Japan. We examined interactions among accessions, known genetic factors, and an environmental factor to determine the factors controlling heading response. Locally adapted accessions have been selected for genetic factors that stabilize heading responses appropriate for barley cultivation, and these accessions show stable heading responses even under varying environmental conditions. We identified vernalization requirement and PPD-H1 haplotype as major stabilizing mechanisms of the heading response for regional adaptation in Kurashiki
    corecore