25 research outputs found

    Evaluation of decompressive craniectomy in mice after severe traumatic brain injury

    Get PDF
    Decompressive craniectomy (DC) is of great significance for relieving acute intracranial hypertension and saving lives after traumatic brain injury (TBI). In this study, a severe TBI mouse model was created using controlled cortical impact (CCI), and a surgical model of DC was established. Furthermore, a series of neurological function assessments were performed to better understand the pathophysiological changes after DC. In this study, mice were randomly allocated into three groups, namely, CCI group, CCI+DC group, and Sham group. The mice in the CCI and CCI+DC groups received CCI after opening a bone window, and after brain injury, immediately returned the bone window to simulate skull condition after a TBI. The CCI+DC group underwent DC and contused tissue removal 6 h after CCI. The mice in the CCI group underwent the same anesthesia process; however, no further treatment of the bone window and trauma was performed. The mice in the Sham group underwent anesthesia and the process of opening the skin and bone window, but not in the CCI group. Changes in Modified Neurological Severity Score, rotarod performance, Morris water maze, intracranial pressure (ICP), cerebral blood flow (CBF), brain edema, blood–brain barrier (BBB), inflammatory factors, neuronal apoptosis, and glial cell expression were evaluated. Compared with the CCI group, the CCI+DC group had significantly lower ICP, superior neurological and motor function at 24 h after injury, and less severe BBB damage after injury. Most inflammatory cytokine expressions and the number of apoptotic cells in the brain tissue of mice in the CCI+DC group were lower than in the CCI group at 3 days after injury, with markedly reduced astrocyte and microglia expression. However, the degree of brain edema in the CCI+DC group was greater than in the CCI group, and neurological and motor functions, as well as spatial cognitive and learning ability, were significantly poorer at 14 days after injury

    Effects of the Freezing–Thawing Cycle Mode on Alpine Vegetation in the Nagqu River Basin of the Qinghai–Tibet Plateau

    No full text
    The freezing–thawing cycle is a basic feature of a frozen soil ecosystem, and it affects the growth of alpine vegetation both directly and indirectly. As the climate changes, the freezing–thawing mode, along with its impact on frozen soil ecosystems, also changes. In this research, the freezing–thawing cycle of the Nagqu River Basin in the Qinghai–Tibet Plateau was studied. Vegetation growth characteristics and microbial abundance were analyzed under different freezing–thawing modes. The direct and indirect effects of the freezing–thawing cycle mode on alpine vegetation in the Nagqu River Basin are presented, and the changing trends and hazards of the freezing–thawing cycle mode due to climate change are discussed. The results highlight two major findings. First, the freezing–thawing cycle in the Nagqu River Basin has a high-frequency mode (HFM) and a low-frequency mode (LFM). With the influence of climate change, the LFM is gradually shifting to the HFM. Second, the alpine vegetation biomass in the HFM is lower than that in the LFM. Frequent freezing–thawing cycles reduce root cell activity and can even lead to root cell death. On the other hand, frequent freezing–thawing cycles increase microbial (Bradyrhizobium, Mesorhizobium, and Pseudomonas) death, weaken symbiotic nitrogen fixation and the disease resistance of vegetation, accelerate soil nutrient loss, reduce the soil water holding capacity and soil moisture, and hinder root growth. This study provides a complete response mechanism of alpine vegetation to the freezing–thawing cycle frequency while providing a theoretical basis for studying the change direction and impact on the frozen soil ecosystem due to climate change

    Metal Sulfides Yolk–Shell Nanoreactors with Dual Component for Enhanced Acidic Electrochemical Hydrogen Production

    No full text
    The activity of electrocatalysts can be optimized via constructing heterostructures, while it remains a challenge for the universal synthesis of heterocatalysts with covalent interface. Herein, a universal bifunctional‐S strategy for the preparation of covalently connected metal sulfides yolk–shell nanoreactors with dual components toward enhanced electrochemical hydrogen production in acid, is reported. Specifically, the yolk–shell MoS2‐(CTAB)2Sz host with abundant covalent S22− is first developed by a micelle‐confined microemulsion technology. The preencapsulated S22− in the precursor is utilized to in situ react with the additional M ions (M = Fe, Co, Ni, Cu, Zn, Mn, Cd, Sn), thus creating the covalent microenvironment at the heterointerface, which demonstrates a universal strategy to prepare dual‐component metal sulfides nanoreactors (MoS2/MxSy–BS). The resultant MoS2/CdS–BS nanoreactor exhibits excellent hydrogen evolution activity (27 mV at 10 mA cm−2) among the MoS2‐based heterocatalysts reported in the literature, while representing an improvement of four times than that of as‐prepared traditional MoS2/CdS heterocatalyst. Operando X‐ray diffractometer patterns are performed to study durability. The enhanced mechanism related to the transformation of catalytic center and the establishment of “electronic bridge” at the interface of MoS2/CdS–BS are revealed by theoretical calculations. This study inspires to develop covalently connected electrocatalysts via nanoreactors’ engineering

    Changes in the three-dimensional molecular structure of coal during methane adsorption induced swelling

    No full text
    Methane (CH4) adsorption-induced swelling is one of the critical factors controlling the permeability of coalbed methane (CBM). CH4 adsorption alters the molecular structure of coal so as to induce coal swelling, and many uncertainties still exist in the process. In this study, the change in the molecular structures of different chemical structures by CH4 adsorption was investigated using the Grand Canonical Monte Carlo method to simulate the alteration of bond lengths and bond angles during swelling. The results demonstrate that the alteration of chemical structure is more extensive than a chemical bond, which is the critical factor causing the swelling behavior. Owing to the complex molecular structure of coal, among the different types of chemical structures, the C-O-C (-O-) chemical structure showed the most significant change in bond angle, with the largest degree of change is 12.89%. Compared with other chemical structures, the C-C-C (aromatic -C-) chemical structures are more stable and the largest degree of change is 0.65%. For the different types of chemical bonds, the C-C chemical bonds showed the most significant change in bond lengths, with the largest degree of change is 2.94%. And the O-H chemical bond showed the smallest change, with the largest degree of change is 0.79%. Considering the structure evolution of coal, the C-O-C (-O-) chemical structure decreases with increasing maturity and changes to the greatest after the adsorption of methane. The aromatic structure increases and the degree of deformation decreases, which is consistent with the previous experimental values for swelling. These results reveal the details of different types of chemical group deformation, providing a molecular-level insight into adsorption swelling and permeability changes

    Tracing potential water sources of the Nagqu River using stable isotopes

    No full text
    10.1016/j.ejrh.2021.100807Journal of Hydrology: Regional Studies3410080

    Construction and immunogenicity of a ∆apxIC/ompP2 mutant of <i>Actinobacillus pleuropneumoniae</i> and <i>Haemophilus parasuis</i>

    No full text
    The apxIC genes of the Actinobacillus pleuropneumoniae serovar 5 (SC-1), encoding the ApxIactivating proteins, was deleted by a method involving sucrose counter-selection. In this study, a mutant strain of A. pleuropneumoniae (SC-1) was constructed and named DapxIC/ ompP2. The mutant strain contained foreign DNA in the deletion site of ompP2 gene of Haemophilus parasuis. It showed no haemolytic activity and lower virulence of cytotoxicity in mice compared with the parent strain, and its safety and immunogenicity were also evaluated in mice. The LD50 data shown that the mutant strain was attenuated 30-fold, compared with the parent strain (LD50 of the mutant strain and parent strain in mice were determined to be 1.0 × 107 CFU and 3.5 × 105 CFU respectively). The mutant strain that was attenuated could secrete inactivated ApxIA RTX toxins with complete antigenicity and could be used as a candidate live vaccine strain against infections of A. pleuropneumoniae and H. parasuis.</em

    Applications of anodized TiO2 nanotube arrays on the removal of aqueous contaminants of emerging concern: A review

    No full text
    The presence of contaminants of emerging concern (CECs) in various water bodies and the associated threats to eco-system and human society have raised increasing concerns. To fight against such a problem, TiO2 photocatalysis is considered to be a powerful tool. In recent decades, TiO2 nanotube array (TNA) fabricated by electrochemical anodization emerged as a viable immobilized catalyst and its applications on CECs removal have gained a considerable amount of research interest. We herein present a critical review on the development of TNA and its applications on the removal of aqueous CECs. In this work, the CECs removal in different TNA based processes, the CECs removal mechanisms, the role of TNA properties, the role of operational parameters, and the role of water matrices are discussed. Moreover, perspectives on the current research progress are presented and recommendations on future research are elaborated
    corecore