174 research outputs found
In situ laser irradiation setup for a Bruker three-circle goniometer
A new design of a setup for in situ laser irradiation of single crystals during an X-ray diffraction experiment is presented. The system is designed for use with a Bruker three-circle goniometer in combination with a Helix ultra-low-temperature cryostat and consists of a laser mount and a set of three adjustable mirrors. The main advantages of the presented system include a stationary laser mount, the ability to irradiate a sample inside the Be nozzle and no impediments to the goniometer movements
Platinum(IV) Complexes with Tridentate, NNC-Coordinating Ligands: Synthesis, Structures, and Luminescence
Platinum(II) complexes of NNC-cyclometalating ligands based on 6-phenyl-2,2âČ-bipyridine (HL1) have been widely investigated for their luminescence properties. We describe how PtL1Cl and five analogues with differently substituted aryl rings, PtL2â6Cl, can be oxidized with chlorine and/or iodobenzene dichloride to generate Pt(IV) compounds of the form Pt(NNC-Ln)Cl3 (n = 1â6). The molecular structures of several of them have been determined by X-ray diffraction. These PtLnCl3 compounds react with 2-arylpyridines to give a new class of Pt(IV) complex of the form [Pt(NNC)(NC)Cl]+. Elevated temperatures are required, and the reaction is accompanied by competitive reduction processes and generation of side-products; however, four examples of such complexes have been isolated and their molecular structures determined. Reaction of PtL1Cl3 with HL1 similarly generates [Pt(NNC-L1)2]2+, which we believe to be the first example of a bis-tridentate Pt(IV) complex. The lowest-energy bands in the UVâvis absorption spectra of all the PtLnCl3 compounds are displaced to higher energy relative to the Pt(II) precursors, but they red-shift with the electron richness of the aryl ring, consistent with predominantly 1[ÏAr â Ï*NN] character to the pertinent excited state. A similar trend is observed for the [Pt(NNC)(NC)Cl]+ complexes. They display phosphorescence in solution at room temperature, centered around 500 nm for [PtL1(ppy)Cl]+ and [Pt(L1)2]2+, and 550 nm for methoxy-substituted derivatives. The lifetimes are in the microsecond range, rising to hundreds of microseconds at 77 K, consistent with triplet excited states of primarily 3[ÏAr â Ï*NN] character with relatively little participation of the metal
Luminescent bis-tridentate iridium(III) complexes: Overcoming the undesirable reactivity of trans-disposed metallated rings using âN^N^Nâcoordinating bis(1,2,4-triazolyl)pyridine ligands
Nine new iridium(III) complexes featuring two tridentate ligands have been synthesised of the form Ir(N^C^N)(âN^N^Nâ), where N^C^N represents a cyclometallating ligand based on 1,3-di(2-pyridyl)benzene and âN^N^Nâ is a doubly deprotonated bis(1,2,4-triazolyl)pyridine. Three examples of each ligand have been used, with different substituents in the central aryl ring of the former and para-substituted aryl groups in the 5-positions of the triazole rings of the latter. Two of the complexes have been structurally characterised in the solid-state by X-ray diffraction, confirming the mutually orthogonal arrangement of the two ligands. Unlike related tris-cyclometallated complexes of the type Ir(N^C^N)(C^N^C), which are unstable with respect to photoactivated cleavage of the trans-disposed IrâC bonds, the new complexes show no evidence of instability. They are phosphorescent in the green region of the spectrum with lifetimes around 200 ns and quantum yields up to 3%, apparently limited by non-radiative decay processes in particular. Although there is some variation in performance with substitution pattern, the only discernible trend is that complexes of the 4-methoxy-substituted N^C^N ligand are the better emitters. Three examples of related complexes of the form Ir(N^C^N)(N^Nâ)Cl â incorporating a bidentate 1,2,4-triazolylpyridine â have also been prepared. They show no room-temperature emission but the properties at 77 K are similar to those of the bis-tridentate systems
Synthesis, stereocontrol and structural studies of highly luminescent chiral tris-amidepyridyl-triazacyclononane lanthanide complexes
The configuration of the remote amide chiral moiety determines the helicity of the metal complex in Ln(III) complexes of nonadentate N6O3 ligands based on triazacyclononane. Solution NMR studies revealed the presence of a dominant isomer whose proportion varies from 9 : 1 to 4 : 1 from Ce to Yb and X-ray crystallographic studies at 120 K of the Yb and two enantiomeric Eu complexes confirmed the configuration as S-Î-λ in the major isomer. Global minimisation methods allowed magnetic susceptibility and electronic relaxation times of the lanthanide ions to be estimated by analysis of variable field longitudinal relaxation rate (R1) data sets. A set of four europium complexes, containing different para-substituted pyridinyl-aryl groups, exist as one major isomer (15 : 1), and absorb light strongly via an ICT transition in the range 320 to 355 nm (Δ = 55 to 65 000 Mâ1 cmâ1). The two examples absorbing light at 332 nm, possess overall emission quantum yields of 35 and 37% in aerated water, making these systems as bright as any Eu complex in solution
Gelation by histidine-derived ureas
A series of l-histidine-derived monoureas are described which exhibit versatile organogelation peroperties when the substituent directly attached to the urea is an aliphatic group. Arylureas exhibit a tendency to bind chloride anion
Selective gelation of N-(4-pyridyl)nicotinamide by copper(II) salts
We report the selective gelation properties of the copper(II) complexes of N-(4-pyridyl)nicotinamide (4PNA). The morphology of the xerogels was examined by scanning electron microscopy (SEM). The correlation between the X-ray powder diffraction (XRPD) pattern of the xerogels and the single crystal structure of the copper(II) acetate complex suggests that the single crystal X-ray data represent a good structural model for the gel fibers, and that gelation arises from the presence of a 1D hydrogen-bonded chain between gelator amide groups and coordinated anions, while the presence of strongly bound water in non-gelator systems results in the formation of more extensively hydrogen-bonded crystalline networks. The selective gelation of all the copper(II) salts compared to the other metal salts may be attributed to the JahnâTeller distorted nature of copper(II), which weakens water binding in all copper(II) salts
Near-infrared electroluminescence beyond 940 nm in Pt(N^C^N)X complexes: influencing aggregation with the ancillary ligand X
We present a study of aggregate excited states formed by complexes of the type Pt(N^C^N)X, where N^C^N represents a tridentate cyclometallating ligand, and X = SCN or I. These materials display near-infrared (NIR) photoluminescence in film and electroluminescence in NIR OLEDs with λmaxEL = 720â944 nm. We demonstrate that the use of X = SCN or I modulates aggregate formation compared to the parent complexes where X = Cl. While the identity of the monodentate ligand affects the energy of PtâPt excimers in solution in only a subtle way, it strongly influences aggregation in film. Detailed calculations on aggregates of different sizes support the experimental conclusions from steady-state and time-resolved luminescence studies at variable temperatures. The use of X = I appears to limit aggregation to the formation of dimers, while X = SCN promotes the formation of larger aggregates, such as tetramers and pentamers, leading in turn to NIR photo- and electroluminescence > 850 nm. A possible explanation for the contrasting influence of the monodentate ligands is the lesser steric hindrance associated with the SCN group compared to the bulkier I ligand. By exploiting the propensity of the SCN complexes to form extended aggregates, we have prepared an NIR-emitting OLED that shows very long wavelength electroluminescence, with λmaxEL = 944 nm and a maximum EQE = 0.3 ± 0.1%. Such data appear to be unprecedented for a device relying on a Pt(II) complex aggregate as the emitter
Platinum(II) Complexes of Nonsymmetrical NCN-Coordinating Ligands: Unimolecular and Excimeric Luminescence Properties and Comparison with Symmetrical Analogues
A series of seven new platinum(II) complexes PtLnCl have been prepared, where Ln is an NCN-coordinating ligand comprising a benzene ring 1,3-disubstituted with two different azaheterocycles. In PtL1â5Cl, one heterocycle is a simple pyridine ring, while the other is an isoquinoline, a quinoline, a pyrimidine (L1, L2, L3), or a p-CF3- or p-OMe-substituted pyridine (L4 and L5). PtL6Cl incorporates both a p-CF3 and a p-OMe-substituted pyridine. The synthesis of the requisite proligands HLn is achieved using Pd-catalyzed cross-coupling methodology. The molecular structures of six of the Pt(II) complexes have been determined by X-ray diffraction. All the complexes are brightly luminescent in deoxygenated solution at room temperature. The absorption and emission properties are compared with those of the corresponding symmetrical complexes featuring two identical heterocycles, PtLnsymCl, and of the parent Pt(dpyb)Cl containing two unsubstituted pyridines [dpybH = 1,3-di(2-pyridyl)benzene]. While the absorption spectra of the nonsymmetrical complexes show features of both PtLnsymCl and Pt(dpyb)Cl, the emission generally resembles that of whichever of the corresponding symmetrical complexes has the lower-energy emission. PtL1Cl differs in thatâat room temperature but not at 77 Kâit displays emission bands that can be attributed to excited states involving both the pyridine and the isoquinoline rings, despite the latter being unequivocally lower in energy. This unusual behavior is attributed to thermally activated repopulation of the former excited state from the latter, facilitated by the very long-lived nature of the isoquinoline-based excited state. At elevated concentrations, all the complexes show an additional red-shifted emission band attributable to excimers. For PtL1Cl, the excimer strikingly dominates the emission spectra at all but the lowest concentrations (<10â5 M). Trends in the energies of the excimers and their propensity to form are compared with those of the symmetrical analogues
Structure and hydration of polyvinylpyrrolidone-hydrogen peroxide
The structure of the commercially important polyvinylpyrrolidone-hydrogen peroxide complex can be understood by reference to the co-crystal structure of a hydrogen peroxide complex and its mixed hydrates of a two-monomer unit model compound, bisVP·2H2O2. The mixed hydrates involve selective water substitution into one of the two independent hydrogen peroxide binding sites
Divergent Approach for Tris-Heteroleptic Cyclometalated Iridium Complexes Using Triisopropylsilylethynyl-Substituted Synthons
Bis-heteroleptic cyclometalated iridium complexes of the form Ir(La)2(acac), where La is a substituted 2-phenylpyridine derivative and acac is an acetylacetonato ligand, are a useful class of luminescent organometallic complexes for a range of applications. Related tris-heteroleptic complexes of the form Ir(La)(Lb)(acac) offer the potential advantage of greater functionality through the use of two different cyclometalated ligands but are, in general, more difficult to obtain. We report the synthesis of divergent bis- and tris-heteroleptic triisopropylsilylethynyl-substituted intermediate complexes that can be diversified using a âchemistry-on-the-complexâ approach. We demonstrate the methodology through one-pot deprotection and Sonogashira cross-coupling of the intermediate complexes with para-R-aryliodides (R = H, SMe, and CN). The photophysical and electrochemical behaviors of the resultant bis- and tris-heteroleptic complexes are compared, and it is shown that the tris-heteroleptic complexes exhibit subtly different emission and redox properties to the bis-heteroleptic complexes, such as further red-shifted emission maxima and lower extinction coefficients, which can be attributed to the reduced symmetry. It is demonstrated, supported by DFT and time-dependent DFT calculations, that the charge-transfer character of the emission can be altered via variation of the terminal substituent; the introduction of an electron-withdrawing cyano group in the terminal position leads to a significant red shift, while the introduction of an SMe group can substantially increase the emission quantum yield. Most notably, this convenient synthetic approach reduces the need to perform the often challenging isolation of tris-heteroleptic complexes to a single divergent intermediate, which will simplify access to families of complexes of the form Ir(La)(Lb)(acac)
- âŠ